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Abstract. We study the existence and stability of periodic solutions of two

kinds of regular equations by means of classical topological techniques like
the Kolmogorov-Arnold-Moser (KAM) theory, the Moser twist theorem, the

averaging method and the method of upper and lower solutions in the reversed

order. As an application, we present some results on the existence and stability
of T -periodic solutions of a Liebau-type equation.

1. Introduction

Let us consider the differential equation

(1.1) ẍ+ f(t, x) = 0,

where f : R × R → R is a continuous function, T -periodic in the first variable
and smooth enough, for example f ∈ C0,4(R/TZ × R). It is known that when
a T -periodic solution x of (1.1) is of the twist type then it is Lyapunov stable (see
Section 2 for more details). This means that the so-called first twist coefficient
of the Birkhoff normal form does not vanish and an explicit expression for that
coefficient in terms of the third order approximation

(1.2) ÿ + a(t)y + b(t)y2 + c(t)y3 + o(y3) = 0,

where

a(t) = fx(t, x(t)), b(t) =
1

2
fxx(t, x(t)), c(t) =

1

6
fxxx(t, x(t)).

was firstly obtained by Ortega [15] (see also [13, 21]) .
Some applications of Ortega’s works can be found in [1, 2, 4]. In a recent work

[3], based on the above ideas, the existence of Lyapunov stable periodic solutions for
the combined attractive-repulsive singularity has been studied by the first author,
Chu and Torres. For further results on mathematical models with singularities,
we refer to the recent book [19], and the references therein. However, up to now,
there are few results about the existence of periodic solutions of the regular systems
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[10, 16]. The main aim of this paper is to develop some new existence and stability
criteria so that the regular case can be studied following the ideas in [3] and an
application to the Liebau phenomenon could be obtained. More precisely, we will
study the existence and stability of T -periodic solutions of the regular equation

(1.3) ẍ = r(t)xα − s(t)xβ ,

and the equation with a small parameter ε

(1.4) ẍ = r(t)xα − εs(t)xβ ,

where 0 < α < β < 1, and r, s are continuous and T -periodic functions.
The Liebau phenomenon or “valveless pumping effect” is referred to a preferential

direction of the flow obtained in mechanical systems without valves as consequence
of asymmetric periodic oscillations, [14]. A simple model which shows this effect,
the so called “one pipe-one tank” configuration, was presented in [17] and a detailed
description of it is also available in [5] and [19, Chapter 8]. That model leads to the
searching of positive T -periodic solutions for the following singular second-order
differential equation

(1.5) ü+ au̇ =
1

u
(e(t)− bu̇2)− c,

where

a =
r0
ρ
, b = 1 +

ζ

2
, c =

gAP
AT

, e(t) =
g V0
AT
−p(t)

ρ
,

and the meaning of the involved functions and parameters are the following

r0 ≥ 0 friction coefficient on the tube
ρ > 0 density of the fluid
ζ ≥ 1 junction coefficient
g acceleration of gravity
AP > 0 cross section of the pipe
AT > 0 cross section of the tank
V0 > 0 total volume of the fluid
p(t) T -periodic forcing

So, from the physical point of view, it is natural to assume in equation (1.5) that

a ≥ 0, b > 1, c > 0 and e is continuous and T − periodic.

Notice that we could even assume that b ≥ 3/2.
Recently, some results on the existence and stability of periodic positive solutions

for (1.5) with friction were presented in [5, 6, 7, 19]. Furthermore, Liao obtained in
[12] the existence of T -periodic solutions of a generalized Liebau-type differential
equation by using the fixed point theorem in cones. However, up to now, there
are few works on the conservative case a = 0, which is an idealization but it is
interesting from both the mathematical and the physical point of view. Our results
in the present paper shall fill partially this gap.

So, let us consider equation (1.5) without friction, that is,

(1.6) ü =
1

u
(e(t)− bu̇2)− c.
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By means of the change of variables u = xκ, where κ = 1/(b + 1) (see [5]), we
rewrite the singular problem (1.6) as

(1.7) ẍ =
e(t)

κ
x1−2κ − c

κ
x1−κ,

which is a regular equation in the form (1.3). Notice that it has physical sense to
consider c as a small parameter, meaning that the section of the pipe is much less
than the section of the tank, and then equation (1.7) fits also in the form (1.4).

The paper is organized as follows: after this Introduction, in Section 2 for the
convenience of the reader we collected some general results, well known by the
specialists, used in order to proof our main theorems. Section 3 is devoted to our
main existence and stability criteria. The importance of such result relies in that,
for the first time in this topic, we have stability theorems for the regular equations
(1.3) and (1.4). In Section 4 the previous results are applied to the Liebau model
(1.6) and some illustrative examples are given.

Throughout this paper the following notations will be used. For a given T -
periodic continuous function h we denote

h̄ =
1

T

∫ T

0

h(t)dt, hm = min
t∈[0,T ]

h(t), hM = max
t∈[0,T ]

h(t), h̃m = min
t∈[0,T ]

|h(t)|,

and 4h = hM
hm

. This quantity 4h ≥ 1 can be regarded as a measure of the ratio
of hM to hm and will play a key role in our main results. Furthermore, we define
γ = 1

β−α . Since 0 < α < β < 1, we have γ ∈ (1,∞).

2. Preliminaries

The linearized equation of (1.2) is the Hill’s equation

(2.1) ÿ + a(t)y = 0.

We say that (2.1) is elliptic, or linearly stable, if its Floquet multipliers λ1, λ2 satisfy
λ1 = λ2, |λ1| = 1, λ1 6= ±1. In this case the rotation number ρ is defined by the
relation λ = exp(±iρT ), and for convenience we write θ = ρT .

It is well known that the linear stability of (2.1) is not enough to ensure the Lia-
punov stability of (1.2). The T -periodic solution x(t) of (1.1) is called 4-elementary
if the multipliers λ of (2.1) satisfy λq 6= 1 for 1 ≤ q ≤ 4. If x(t) is 4-elementary then
we say that x(t) is of the twist type if the first twist coefficient µ of the Birkhoff
normal form of the Poincaré map is non-zero. In that case Moser’s invariant curve
theorem can be applied to show that a solution of twist type is Lyapunov stable
(see §32-§34 in [18]) and, moreover, around it the complex dynamics prescribed by
KAM theory arises. Clearly, a major difficulty in this approach is the computation
of the corresponding first twist coefficient µ. This task was firstly accomplished by
Ortega in [15] where he found an explicit formula for µ, later reformulated in [21]
(see also [13]) as

(2.2) µ =

∫∫
[0,T ]2

b(t)b(τ)R3(t)R3(τ)χθ(|ϕ(t)− ϕ(τ)|)dtdτ − 3

8

∫ T

0

c(t)R4(t)dt,

where R and ϕ denote the polar coordinates, Ψ(t) = R(t)exp(iϕ(t)) is the complex
solution of (2.1) with initial conditions Ψ(0) = 1,Ψ′(0) = i and the kernel χθ is
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given by

χθ(x) =
3 cos(x− θ/2)

16 sin(θ/2)
+

cos 3(x− θ/2)

16 sin(3θ/2)
, x ∈ [0, θ].

2.1. Existence lemmas.

Definition 2.1. A function σ1 ∈ C2([0, T ]) is said to be a lower solution of (1.1)
if
(i) σ̈1 + f(t, σ1) ≥ 0 for all t ∈ [0, T ]
(ii) σ1(0) = σ1(T ), σ̇1(0) ≥ σ̇1(T ).

Analogously, an upper solution σ2 is defined by reversing the respective in-
equalities in the previous definition. A lower solution (resp. upper solution) is
called strict if the inequality in (i) is strict. It is well known that the classical
method of lower and upper solutions is a quite effective and flexible tool for study-
ing existence of T -periodic solutions of (1.1). Actually, a couple of upper and lower
solutions such that σ1(t) ≤ σ2(t) for all t typically leads to unstable solutions lying
between σ1 and σ2 (see [9]). In order to obtain a stable solution, we now assume
that σ1 and σ2 are ordered in the reversed way, provided the partial derivative of
f with respect to x is not too large. The following result is a consequence of [8,
Theorem 3.7].

Lemma 2.2. Assume that there exist upper and lower solutions of (1.1) such that
σ2(t) ≤ σ1(t) for all t. Under the assumption

fx(t, x) ≤ π2

T 2
, for any x ∈ [σ2(t), σ1(t)],

equation (1.1) has a T -periodic solution x such that

σ2(t) ≤ x(t) ≤ σ1(t)

for every t.

Remark 2.3. Under the assumptions of Lemma 2.2 all the T -periodic solutions of
(1.1) between σ2 and σ1 are ordered and there exist the maximum and the minimum
of such solutions, see [8, Exercise 3.5].

The following lemma summarises the averaging method and provides the exis-
tence of periodic solutions on differential equations like (1.4) containing a small
parameter (for more details see [11, Chapter V, Theorem 3.2]).

Lemma 2.4. We consider the following differential system

(2.3) ẋ = εf(t, x, ε),

where f : R ×D × [0,+∞) → Rn is a continuous function, T -periodic in the first
variable, of class C1 in x, ε and D is an open subset of Rn. We define

f0(x) = lim
T→∞

1

T

∫ T

0

f(t, x, 0)dt,

and assume that for x0 ∈ D with f0(x0) = 0 we have the determinant of the
Jacobian matrix Jf0(x0) 6= 0. Then there exist ε0 > 0 and a function x(t, ε),
continuous for (t, ε) ∈ R× [0, ε0], such that x(t, ε) is a T -periodic solution of (2.3)
for any ε ∈ [0, ε0] and x(t, 0) = x0. Moreover, this solution x(t, ε) is unique in
a neighborhood of x0.



5

2.2. Stability lemmas.

Lemma 2.5. [20, Theorem 3.1, Theorem 3.2] Assume that there exists a T -periodic
solution x of (1.1) such that:

(i) 0 < am ≤ aM < ( π
2T )2,

(ii) cm > 0,

and either

(iii) 10b̃2ma
3/2
m > 9cM (aM )5/2

or

(iii’) 10b̃2Ma
3/2
M < 9cm(am)5/2

is satisfied. Then the solution x is of the twist type and the Moser twist theorem
[18] implies that such a solution is stable.

The following asymptotic behavior of R and the rotation number ρ ≡ ρ(a) are
very useful in order to get the sign of the first twist coefficient.

Lemma 2.6. [4, Corollary 4.1] Assume that a in (2.1) is nonnegative and has
a positive mean ā > 0. Then R(t) =: R(t, a) and θ =: θ(a) in formula (2.2) satisfy
the asymptotic behavior

R(t) = ā−1/4(1 +O(ā)), θ(a) = T ā1/2(1 +O(ā)), when ā→ 0+.

3. Main results

3.1. Existence results. Let us define

(3.1) ∆ := ∆r∆s =
rMsM
rmsm

,

(3.2) f(t, x) = s(t)xβ − r(t)xα,

and

(3.3) g(x) = βsMx
β−1 − αrmxα−1 for x > 0.

Notice that ∆ ≥ 1.

Lemma 3.1. Assume that r, s are positive T -periodic continuous functions. Then
the following claims hold:

(i) The functions

σ2(t) ≡
(
rm
sM

)γ
≤ σ1(t) ≡

(
rM
sm

)γ
,

are constant upper and lower solutions of (1.3), respectively.
(ii) For all t ∈ R and x > 0,

fx(t, x) ≤ g(x).

(iii) If α(1−α)
β(1−β) ≤ 1 then

max
σ2≤x≤σ1

g(x) = g(σ2) =
rm
γ

(
sM
rm

)(1−α)γ

.
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(iv) If 1 < α(1−α)
β(1−β) < ∆ then

max
σ2≤x≤σ1

g(x) = g(x0) =
αrm

γ(1− β)

(
β(1− β)sM
α(1− α)rm

)(1−α)γ

,

where

x0 =

(
α(1− α)rm
β(1− β)sM

)γ
.

(v) If α(1−α)
β(1−β) ≥ ∆ then

max
σ2≤x≤σ1

g(x) = g(σ1) = rm(β∆− α)

(
sm
rM

)(1−α)γ

.

Proof. It is easy to check that (i) holds and that for all t ∈ R and x > 0 we have

fx(t, x) = βs(t)xβ−1 − αr(t)xα−1

≤ βsMx
β−1 − αrmxα−1 = g(x),

so (ii) holds too.
Now, g′(x) = 0 if and only if x = x0, as defined in (iv), and g is increasing

on (0, x0) and decreasing on (x0,+∞). Therefore, either x0 ≤ σ2, x0 ∈ (σ2, σ1),

or x0 ≥ σ1 if either α(1−α)
β(1−β) ≤ 1, 1 < α(1−α)

β(1−β) < ∆, or α(1−α)
β(1−β) ≥ ∆ are satisfied,

respectively. Thus claims (iii), (iv) and (v) also hold. �

As consequence of Lemmas 3.1 and 2.2 we have the following existence result.

Theorem 3.2. Assume that r, s are positive T -periodic continuous functions and
one of following conditions holds:

(C1) α(1−α)
β(1−β) < 1 and rm

γ

(
sM
rm

)(1−α)γ
≤
(
π
T

)2
,

(C2) 1 ≤ α(1−α)
β(1−β) ≤ ∆ and αrm

γ(1−β)

(
β(1−β)sM
α(1−α)rm

)(1−α)γ
≤
(
π
T

)2
,

(C3) α(1−α)
β(1−β) > ∆ and rm(β∆− α)

(
sm
rM

)(1−α)γ
≤
(
π
T

)2
.

Then equation (1.3) has at least one T -periodic solution x such that

(3.4)

(
rm
sM

)γ
≤ x(t) ≤

(
rM
sm

)γ
.

Corollary 3.3. Assume that r, s are positive T -periodic continuous functions and
the following inequality holds

(3.5)
(rm)γ(β−1)

(sM )γ(α−1)
(β∆− α) <

( π
T

)2
.

Then equation (1.3) has at least one T -periodic solution x such that (3.4) holds.
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Proof. Taking into account that

max
x∈[σ2,σ1]

g(x) = max
x∈[σ2,σ1]

[βsMx
β−1 − αrmxα−1]

= max
x∈[σ2,σ1]

[xα−1(βsMx
β−α − αrm)]

≤
(
rm
sM

)γ(α−1)
[βsM

(
rM
sm

)γ(β−α)
− αrm]

=

(
rm
sM

)γ(α−1)
[βsM

(
rM
sm

)
− αrm]

=
(rm)γ(β−1)

(sM )γ(α−1)
(β∆− α),

from Lemma 3.1 and condition (3.5) it follows that Theorem 3.2 applies. �

We complete this section with the application of Lemma 2.4 to equation (1.4).

Theorem 3.4. Assume that r and s are T -periodic continuous functions, and
r̄ · s̄ > 0. Then equation (1.4) has a T -periodic solution x(t, ε) if ε > 0 is small
enough. Moreover, the following asymptotic behavior holds

(3.6) lim
ε→0+

εγx(t, ε) = ωγ , uniformly in t,

where

ω =
r̄

s̄
.

Proof. To apply Lemma 2.4, first we rewrite equation (1.4) as the differential system

(3.7)
ẋ = y,
ẏ = r(t)xα − εs(t)xβ .

Doing the rescaling of variables

x = uε−γ ,

y = vε−
γ(α+1)

2 ,

ν = ε
γ(1−α)

2 ,

system (3.7) takes the form

(3.8)
u̇ = νv,
v̇ = ν

(
r(t)uα − s(t)uβ

)
.

The averaged system of (3.8) is

(3.9)
ξ̇ = νη,
η̇ = ν

(
rξα − sξβ

)
.

After some calculations we have that the averaged system (3.9) has a unique non-
trivial constant solution (ξ0, η0) = (ωγ , 0), and that the determinant of the Jacobian
matrix evaluated at (ξ0, η0) does not vanish. Then by Lemma 2.4, the equilibrium
(ξ0, η0) is continuable for small ν, that is, there exists ν0 such that system (3.8) has
a T -periodic solution (u(t, ν), v(t, ν)) for 0 < ν < ν0, tending uniformly to (ξ0, η0)
as ν → 0+. Going back through the rescaling, we conclude that equation (1.4)
has a T -periodic solution x(t, ε) for ε > 0 small enough. Moreover, the asymptotic
behavior (3.6) occurs. �
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Remark 3.5. The asymptotic behavior (3.6) will be the key in order to prove
stability results in the next section. Moreover, (3.6) implies that the solution x(t, ε)
is positive for all t and ε > 0 small enough, which is essential for the application
to the Liebau model.

3.2. Stability results. Let x be a T -periodic solution of equation (1.3). A com-
putation of the coefficients in (1.2) for that equation gives:

a(t) = βs(t)x(t)β−1 − αr(t)x(t)α−1,

b(t) =
1

2

[
β(β − 1)s(t)x(t)β−2 − α(α− 1)r(t)x(t)α−2

]
,

c(t) =
1

6

[
β(β − 1)(β − 2)s(t)x(t)β−3 − α(α− 1)(α− 2)r(t)x(t)α−3

]
.

Whenever a localization for the solution x is available we can obtain some esti-
mates for the previous coefficients. We will derive carefully those estimates in the
following three lemmas.

Lemma 3.6. Assume that r, s are positive T -periodic continuous functions and
that x is a solution of equation (1.3) satisfying (3.4) (for instance if the conditions
of Theorem 3.2 are fulfilled). If moreover

(S) ∆ < β(1−β)(2−β)
α(1−α)(2−α)

is satisfied, then we have:

(i) 0 < rM
γ

(
sm
rM

)γ(1−α)
≤ am ≤ aM ≤ rm

γ

(
sM
rm

)γ(1−α)
.

(ii) cm > 0.

(iii) bM < 0, b̃m ≥ 1
2

(
rM
sm

)γ(α−2)
rM (β(1 − β) − α(1 − α)) > 0, and b̃M ≤

1
2

(
rm
sM

)γ(α−2)
rm(β(1− β)− α(1− α)).

Proof. Take into account that since α < β and ∆ ≥ 1, assumption (S) implies

(3.10) 1 ≤ ∆ <
β(1− β)

α(1− α)
.

Claim (i).- Note that a(t) = fx(t, x(t)). Hence, from (3.4), (3.10) and Lemma 3.1
we obtain

(3.11) aM ≤
rm
γ

(
sM
rm

)(1−α)γ

.

On the other hand, using (3.4), (3.10) and reasoning as in the proof of Lemma 3.1
we get
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a(t) ≥ βsmx(t)β−1 − αrMx(t)α−1

≥ βsmσ
β−1
1 − αrMσα−11

= σα−11

[
βsmσ

β−α
1 − αrM

]
=

(
rM
sm

)γ(α−1) [
βsm

(
rM
sm

)
− αrM

]
=

(
rM
sm

)γ(α−1)
rM
γ

> 0.

Claim (ii).- From (S) and (3.4) it follows that

c(t) =
1

6
x(t)α−3

[
β(β − 1)(β − 2)s(t)x(t)β−α − α(α− 1)(α− 2)r(t)

]
≥ 1

6
x(t)α−3[β(β − 1)(β − 2)sm

(
rm
sM

)γ(β−α)
− α(α− 1)(α− 2)rM ]

=
1

6
x(t)α−3rM [β(β − 1)(β − 2)

1

∆
− α(α− 1)(α− 2)]

> 0.

Claim (iii).- Now, from (3.4) and (3.10) we deduce

b(t) ≤ 1

2

[
β(β − 1)smx(t)β−2 − α(α− 1)rMx(t)α−2

]
=

1

2
x(t)α−2[α(1− α)rM − β(1− β)smx(t)β−α]

≤ 1

2
x(t)α−2

[
α(1− α)rM − β(1− β)smσ

β−α
2

]
=

1

2
x(t)α−2

[
α(1− α)rM − β(1− β)sm

(
rm
sM

)]
=

1

2
x(t)α−2rM

[
α(1− α)− β(1− β)

1

∆

]
< 0.

Finally, taking into account that b(t) < 0, (3.4), (3.10), (S) and reasoning as in
the proof of Lemma 3.1 we have



10 F. WANG, J.A. CID, M. ZIMA

b̃(t) = −b(t)

≥ 1

2

[
β(1− β)smx(t)β−2 − α(1− α)rMx(t)α−2

]
≥ 1

2

[
β(1− β)smσ

β−2
1 − α(1− α)rMσ

α−2
1

]
=

1

2
σα−21

[
β(1− β)smσ

β−α
1 − α(1− α)rM

]
=

1

2

(
rM
sm

)γ(α−2) [
β(1− β)sm

(
rM
sm

)
− α(1− α)rM

]
=

1

2

(
rM
sm

)γ(α−2)
rM

[
β(1− β)− α(1− α)

]
,

and

b̃(t) ≤ 1

2

[
β(1− β)sMx(t)β−2 − α(1− α)rmx(t)α−2

]
≤ 1

2

[
β(1− β)sMσ

β−2
2 − α(1− α)rmσ

α−2
2

]
=

1

2
σα−22

[
β(1− β)sMσ

β−α
2 − α(1− α)rm

]
=

1

2

(
rm
sM

)γ(α−2) [
β(1− β)sM

(
rm
sM

)
− α(1− α)rm

]
=

1

2

(
rm
sM

)γ(α−2)
rm

[
β(1− β)− α(1− α)

]
.

�

The following lemma, which is easy to check in a similar way to Lemma 3.1,
provides us with computable bounds for cM .

Lemma 3.7. Assume that r, s are positive T -periodic continuous functions and
that x is a solution of equation (1.3) satisfying (3.4) (for instance if the conditions
of Theorem 3.2 are fulfilled), that is

σ2 =

(
rm
sM

)γ
≤ x(t) ≤

(
rM
sm

)γ
= σ1.

If (S) is satisfied, then the following claims hold:

(i) For all t ∈ R and x > 0,

fxxx(t, x) ≤ g1(x) :=
1

6

(
β(1− β)(2− β)sMx

β−3 − α(1− α)(2− α)rmx
α−3) ,

and the only positive solution of g′1(x) = 0 is

x1 =

(
α(1− α)(2− α)(3− α)rm
β(1− β)(2− β)(3− β)sM

)
γ .

Moreover, g1 is increasing on (0, x1) and decreasing on (x1,+∞).
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(ii) If
α(1− α)(2− α)(3− α)

β(1− β)(2− β)(3− β)
≤ 1 then

cM ≤ max
x∈[σ2,σ1]

g1(x) = g1(σ2) =
1

6
((1−β)(2−β)β−(1−α)(2−α)α)rm

(
rm
sM

)
γ(α−3).

(iii) If 1 <
α(1− α)(2− α)(3− α)

β(1− β)(2− β)(3− β)
< ∆ then

cM ≤ max
x∈[σ2,σ1]

g1(x) = g1(x1) =
1

6

(
(α− 3)(α− 2)(α− 1)α

β − 3
− (α− 2)(α− 1)α

)
rm x

α−3
1 .

(iv) If
α(1− α)(2− α)(3− α)

β(1− β)(2− β)(3− β)
≥ ∆ then

cM ≤ max
x∈[σ2,σ1]

g1(x) = g1(σ1) =
1

6
rm((1−β)(2−β)β∆−(1−α)(2−α)α)

(
rM
sm

)
γ(α−3).

The computable bounds for cm are given in the following lemma.

Lemma 3.8. Assume that r, s are positive T -periodic continuous functions and
that x is a solution of equation (1.3) satisfying (3.4). If (S) holds, then:

(i) For all t ∈ R and x > 0,

fxxx(t, x) ≥ g2(x) :=
1

6

(
β(1− β)(2− β)smx

β−3 − α(1− α)(2− α)rMx
α−3) ,

and the only positive solution of g′2(x) = 0 is

x2 =

(
α(1− α)(2− α)(3− α)rM
β(1− β)(2− β)(3− β)sm

)
γ .

Moreover, g2 is increasing on (0, x2) and decreasing on (x2,+∞).

(ii) If
α(1− α)(2− α)(3− α)

β(1− β)(2− β)(3− β)
≥ 1 then

cm ≥ min
x∈[σ2,σ1]

g2(x) = g2(σ2) =
1

6
((1−β)(2−β)β

1

∆
−(1−α)(2−α)α)rM

(
rm
sM

)
(α−3)γ .

(iii) If 1 >
α(1− α)(2− α)(3− α)

β(1− β)(2− β)(3− β)
>

1

∆
then

cm ≥ min
x∈[σ2,σ1]

g2(x) = min{g2(σ2), g2(σ1)} =

1

6
rM min

{(
rm
sM

)(α−3)γ

((1− β)(2− β)β
1

∆
− (1− α)(2− α)α),

(
rM
sm

)(α−3)γ

((1− β)(2− β)β − (1− α)(2− α)α)

}
.

(iv) If
α(1− α)(2− α)(3− α)

β(1− β)(2− β)(3− β)
≤ 1

∆
then

cm ≥ min
x∈[σ2,σ1]

g2(x) = g2(σ1) =
1

6
rM ((1−β)(2−β)β−(1−α)(2−α)α)

(
rM
sm

)
(α−3)γ .

Now, we present our first stability result for equation (1.3).



12 F. WANG, J.A. CID, M. ZIMA

Theorem 3.9. Let us assume that r, s are positive T -periodic continuous functions
and

(3.12) ∆ <
β(1− β)(2− β)

α(1− α)(2− α)
,

(3.13)
rm
γ

(
sM
rm

)γ(1−α)
<
( π

2T

)2
,

(3.14) ∆ ≤ α(1− α)(2− α)(3− α)

β(1− β)(2− β)(3− β)
,

and

(3.15)
5

3
γ∆

5
2γ(α−1)∆

7
2
r (β(1−β)−α(1−α))2 > (1−β)(2−β)β∆−(1−α)(2−α)α.

Then there exists a stable T -periodic solution of (1.3) satisfying (3.4).

Proof. Since (3.12) and (3.13) imply condition (C1) of Theorem 3.2, the existence
of a solution of (1.3) satisfying (3.4) follows. The stability of such solution is
a consequence of Lemma 2.5, (i), (ii) and (iii), taking into account the estimates
obtained in Lemmas 3.6 and 3.7. �

Remark 3.10. Condition (3.14) allows us to use part (iv) of Lemma 3.7 in order
to get condition (3.15). Assuming the hypotheses of parts (ii) or (iii) of Lemma
3.7 instead of (3.14) will lead to alternate versions of (3.15).

Our next stability result, analogous to Theorem 3.9, follows from (i), (ii) and
(iii’) of Lemma 2.5 and the estimates from Lemmas 3.6 and 3.8.

Theorem 3.11. Let us assume that r, s are positive T -periodic continuous func-
tions, and (3.12)-(3.13) hold. Moreover, if

(3.16) 1 ≤ α(1− α)(2− α)(3− α)

β(1− β)(2− β)(3− β)
,

and

(3.17)
5

3
γ(β(1−β)−α(1−α))2 < ∆

5
2γ(α−1)∆

7
2
r ((1−β)(2−β)β

1

∆
−(1−α)(2−α)α),

then there exists a stable T -periodic solution of (1.3) satisfying (3.4).

Remark 3.12. Condition (3.16) allows us to use part (ii) of Lemma 3.8 in order
to get condition (3.17). Assuming the hypotheses of parts (iii) or (iv) of Lemma
3.8 instead of (3.16) will lead to alternate versions of (3.17).

In the remainder of this section we provide a stability criterium for (1.4).

Theorem 3.13. Assume that r, s are T -periodic continuous functions, and r and
s are positive. Then the T -periodic solution x(t, ε) of (1.4) obtained in Theorem
3.4 is stable if ε > 0 is small enough and the following conditions are satisfied

(3.18) 2α2 + 2β2 + 7αβ − α− β − 1 6= 0,

(3.19)
αrM
βsm

≤ ω :=
r̄

s̄
.
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Proof. To prove our theorem it is enough to show that the first twist coefficient µ
given by (2.2) is different from zero. Observe that the third-order approximation
of (1.4) is

ÿ + a(t)y + b(t)y2 + c(t)y3 + o(y3) = 0,

where

(3.20) a(t) = εβs(t)x(t)β−1 − αr(t)x(t)α−1,

(3.21) b(t) =
1

2

[
εβ(β − 1)s(t)x(t)β−2 − α(α− 1)r(t)x(t)α−2

]
,

and

(3.22) c(t) =
1

6

[
εβ(β − 1)(β − 2)s(t)x(t)β−3 − α(α− 1)(α− 2)r(t)x(t)α−3

]
.

By inserting the limit (3.6) into (3.20)-(3.22), we have

(3.23) lim
ε→0+

εγ(α−1)a(t) = βs(t)ωγ(β−1) − αr(t)ωγ(α−1),

(3.24) lim
ε→0+

εγ(α−2)b(t) =
1

2

[
β(β − 1)s(t)ωγ(β−2) − α(α− 1)r(t)ωγ(α−2)

]
,

and
(3.25)

lim
ε→0+

εγ(α−3)c(t) =
1

6

[
β(β − 1)(β − 2)s(t)ωγ(β−3) − α(α− 1)(α− 2)r(t)ωγ(α−3)

]
.

Using condition (3.19) in (3.23), we obtain

lim
ε→0+

εγ(α−1)a(t) = βs(t)ωγ(β−1) − αr(t)ωγ(α−1)

≥ βsmω
γ(β−1) − αrMωγ(α−1)

= ωγ(α−1)(βsmω − αrM ) ≥ 0,

which implies that a(t) ≥ 0 if ε > 0 is small enough. Moreover,

lim
ε→0+

εγ(α−1)ā = (β − α)
r̄γ(β−1)

s̄γ(α−1)
,

which implies that ā > 0 if ε > 0 is small enough and that lim
ε→0+

ā = 0+.

Application of Lemma 2.6 gives

(3.26) lim
ε→0+

ε
γ(α−1)

2 θ = T
√
β − α

√
r̄γ(β−1)

s̄γ(α−1)
,

and

(3.27) lim
ε→0+

R(t)

ε
γ(α−1)

4

=
1

4
√
β − α

4

√
s̄γ(α−1)

r̄γ(β−1)

for ε > 0 small enough.
It follows from [13, Lemma 3.6] that (2.1) is elliptic and 4-elementary if ε > 0 is

small enough. Moreover, it is proved in [21] that the kernel χθ in (2.2) is symmetric
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with respect to the line x = θ/2, χθ is strictly increasing on [0, θ/2] and strictly
decreasing on [θ/2, θ]. Therefore,

(3.28)

min
x∈[0,θ]

χθ(x) = χθ(0) =
3 cos(θ/2)

16 sin(θ/2)
+

cos(3θ/2)

16 sin(3θ/2)

=
5

8 sin(3θ/2)

(1 + 4 cos θ) cos(θ/2)

5
,

and

(3.29)

max
x∈[0,θ]

χθ(x) = χθ(θ/2) =
3

16 sin(θ/2)
+

1

16 sin(3θ/2)

=
5

8 sin(3θ/2)

10− 12 sin2(θ/2)

10
.

We deduce from (3.28)-(3.29) that for ε > 0 small enough we get

χθ(x) =
5

12θ

(
1 +O(θ2)

)
=

5

12
(T
√
ā)−1 +O(ā),

in which we have used Lemma 2.6. This gives

lim
ε→0+

[ε
1
2γ(1−α)χθ(|ϕ(t)− ϕ(τ)|)] =

5

12T

1√
β − α

√
r̄γ(1−β)

s̄γ(1−α)
.

Let

µ1 =

∫∫
[0,T ]2

b(t)b(τ)R3(t)R3(τ)χθ(|ϕ(t)− ϕ(τ)|)dtdτ,

and

µ2 =

∫ T

0

c(t)R4(t)dt.

Using (3.23)-(3.27), we obtain

lim
ε→0+

µ2

ε2γ
= lim

ε→0+

∫ T

0

εγ(α−3)c(t) · R
4(t)

εγ(α−1)
dt

=

∫ T

0

1

6

[
β(β − 1)(β − 2)s(t)ωγ(β−3) − α(α− 1)(α− 2)r(t)ωγ(α−3)

]
· 1

β − α
s̄γ(α−1)

r̄γ(β−1)
dt

=
T s̄γ(α−1)

6(β − α)r̄γ(β−1)

[
β(β − 1)(β − 2)ωγ(β−3)s̄− α(α− 1)(α− 2)ωγ(α−3)r̄

]
=

T

6(β − α)ω2γ
[β(β − 1)(β − 2)− α(α− 1)(α− 2)]

=
T

6ω2γ
(α2 + αβ + β2 − 3α− 3β + 2).

Clearly,

lim
ε→0+

µ1

ε2γ
= lim

ε→0+

∫∫
[0,T ]2

εγ(α−2)b(t) · εγ(α−2)b(τ) ·
[
R3(t)

ε
3γ(α−1)

4

]
·
[
R3(τ)

ε
3γ(α−1)

4

]
·
[
ε

1
2γ(1−α)χθ(|ϕ(t)− ϕ(τ)|)

]
dtdτ.
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Therefore, in the same manner we obtain

lim
ε→0+

µ1

ε2γ
=

∫∫
[0,T ]2

1

4

[
β(β − 1)ωγ(β−2)s(t)− α(α− 1)ωγ(α−2)r(t)

]
·
[
β(β − 1)ωγ(β−2)s(τ)− α(α− 1)ωγ(α−2)r(τ)

]
× 1

(β − α)3/2

[
s̄γ(α−1)

r̄γ(β−1)

]3/2
· 5

12T

1√
β − α

√
r̄γ(1−β)

s̄γ(1−α)
dtdτ

=
5

48T

1

(β − α)2
s̄2γ(α−1)

r̄2γ(β−1)

∫∫
[0,T ]2

[
β(β − 1)ωγ(β−2)s(t)− α(α− 1)ωγ(α−2)r(t)

]
×
[
β(β − 1)ωγ(β−2)s(τ)− α(α− 1)ωγ(α−2)r(τ)

]
dtdτ

=
5

48T

1

(β − α)2
s̄2γ(α−1)

r̄2γ(β−1)

[
β(β − 1)T s̄ωγ(β−2) − α(α− 1)T r̄ωγ(α−2)

]2
=

5T

48ω2γ
(α+ β − 1)2.

Hence, by (2.2)

lim
ε→0+

µ

ε2γ
= lim

ε→0+

µ1 − 3
8µ2

ε2γ

=
T

ω2γ

[
5(α+ β − 1)2

48
− α2 + αβ + β2 − 3α− 3β + 2

16

]
=

T

48ω2γ
(2α2 + 2β2 + 7αβ − α− β − 1).

Condition (3.18) implies that

lim
ε→0+

µ

ε2γ
6= 0,

which means that the twist coefficient µ is non-zero when ε is small enough. This
finishes the proof. �

Corollary 3.14. Suppose that r and s are T -periodic continuous functions, r and
s are positive, α, β satisfy (3.18)-(3.19). Then the equation

(3.30) ẍ = λr(t)xα − s(t)xβ

has a stable T -periodic solution x(t, λ) if λ is large enough.

Proof. If we introduce the variable

x = λ
1

1−α y,

then (3.30) is changed to the equation

ÿ = r(t)yα − εs(t)yβ ,

where

ε = λ
β−1
1−α .

Note that ε → 0 if and only if λ → +∞. So Corollary 3.14 holds from Theorem
3.13. �
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4. Application to the Liebau model

In our next result we give explicit conditions in terms of the data in order to
obtain the existence, localization, and stability of positive solutions of (1.6).

Theorem 4.1. Let us assume em > 0. The following conclusions hold:
(I) (Existence). If

(4.1) c2[beM − (b− 1)em] <
( π
T

)2
e2m,

is satisfied, then there exists a T -periodic solution u of (1.6) such that

em
c
≤ u(t) ≤ eM

c
for all t ∈ [0, T ].

(II) (Stability). If

(4.2) ∆e <
b(b+ 2)

2(b− 1)(b+ 3)
,

(4.3)
c2

em
<
( π

2T

)2
,

(4.4) ∆e ≤
4(b− 1)(b+ 3)

b(2b+ 3)
,

and

(4.5) 3b(b+ 2)∆5/2
e − 6(b− 1)(b+ 3)∆3/2

e < 5(b− 2)2,

are satisfied, then there exists a stable T -periodic solution u of (1.6) such that

em
c
≤ u(t) ≤ eM

c
for all t ∈ [0, T ].

(III) (Stability). If (4.2), (4.3),

(4.6) b ≥ 3

2
,

and

(4.7) 5(b− 2)2∆5/2
e + 6(b− 1)(b+ 3)∆e < 3b(b+ 2),

are satisfied, then there exists a stable T -periodic solution u of (1.6) such that

em
c
≤ u(t) ≤ eM

c
for all t ∈ [0, T ].

Proof. Since r(t) = (b + 1)e(t) and s(t) = (b + 1)c, the existence follows from
Corollary 3.3 taking α = (b − 1)κ and β = bκ. On the other hand, the stability
results (II) and (III) are a direct consequence of Theorems 3.9 and 3.11, respectively.

�

Remark 4.2. Note that in Theorem 4.1 the stability conditions in parts (II) and
(III) also imply existence.

On the other hand, since ∆e ≥ 1, a necessary condition in order to apply either
part (II) or part (III) of Theorem 4.1 is

1.5 ≤ b <
√

7− 1 ≈ 1.64575.
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Example 4.3. The equation

(4.8) ü =
1

u
(0.2 sin2 t+ 10− bu̇2)− c

has at least one stable 2π-periodic positive solution provided that 1.5 ≤ b < 1.56138
and 0 < c < 0.790569.

Proof. Let us define e(t) = 0.2 sin2 t+ 10 and T = 2π. Then we can compute that
eM = 10.2, em = 10 and ∆e = 1.02. All conditions of Theorem 4.1 (III) are satisfied
if 1.5 ≤ b < 1.56138 and 0 < c < 0.790569, thus we get that (4.8) has at least one
stable 2π-periodic positive solution.

1 2 3 4 5 6

25.2495

25.2500

25.2505

25.2510

2π-periodic solution of equation (4.8) with b = 1.55 and c = 0.4.

�

Finally, by considering c as a small parameter in (1.6), we obtain the following
result about the existence and stability of periodic solutions.

Theorem 4.4. Let us assume ē > 0. Then the following conclusions hold:
(I) (Existence). For c small enough, there exists at least one T -periodic solution
u(t, c) of (1.6) and moreover

lim
c→0

c u(t, c) = e, uniformly in t.

(II) (Stability). The periodic solution found in part (I) is stable provided that

b 6= 7+
√
33

8 and (b− 1)eM − eb ≤ 0.

Proof. Since r(t) = (b+ 1)e(t) and s(t) = b+ 1, condition e > 0 implies that r > 0.
Now the existence follows by using Theorem 3.4. Concerning the stability, we apply
Theorem 3.13. �

Remark 4.5. We point out that ē > 0 assumed in Theorem 4.4 is a necessary
condition for the existence of a periodic positive solution of (1.6), see [5]. It is an
open problem explicitly stated in [19, Chapter 8] whether ē > 0 is also a sufficient
condition for existence. So, Theorem 4.4 can be viewed as a partial answer to this
open problem which in addition provides stability information.

Using Theorem 4.4, we can prove the following result with a sign changing non-
linearity.



18 F. WANG, J.A. CID, M. ZIMA

Example 4.6. The equation

(4.9) ü =
1

u
(cos t+

1

2
− bu̇2)− c

has at least one stable 2π-periodic positive solution provided that 1 < b ≤ 3
2 and c

is small enough.

1 2 3 4 5 6

3.4

3.5

3.6

3.7

3.8

2π-periodic positive solution of equation (4.9) with b = 3/2 and c = 0.133333.

Remark 4.7. Note that Theorem 4.1 cannot be applied to (4.9) in order to guar-
antee the existence and stability of 2π-periodic solution since e(t) = cos t+ 1

2 takes
negative values.
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