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Abstract

This paper is devoted to the study the boundary value problem
{

u(4)(t) = f(t, u(t)) for all t ∈ I = [0, 1],
u(0) = u(1) = u′′(0) = u′′(1) = 0.

We prove the existence of at least one, two or three solutions in the presence of

a pair of, not necessarily ordered, lower and upper solutions.

The proof follows from maximum principles related with the operator u(4) +

Mu and Amann’s three solutions theorem.

Keywords. Upper and lower solutions, fourth order maximum principles,

multiple solutions.

2000 Mathematics Subject Classification. 34B15, 34B27.

1 Introduction

The aim of this paper is to explore the method of lower and upper solutions in

order to give some existence and multiplicity results for equations of the form

u(4)(t) = f(t, u(t)) for all t ∈ I := [0, 1], (1.1)

with the boundary conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0. (1.2)

Such boundary value problems appear, as it is well known [12], in the theory

of hinged beams.

The method of lower and upper solutions is a powerful tool used in Nonlinear

Analysis to prove the existence, localization and approximation of solutions for

a great variety of boundary value problems.

Roughly speaking, for some kind of second order boundary value problems

it is well-known that the existence of a lower solution, α, and an upper solution,

β, which are well ordered, that is, α ≤ β, implies the existence of a solution
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between them (see [6]). In the recent papers [7, 8, 9] it is shown that also in

the presence of nonordered, α 
 β, lower and upper solutions it is possible to

obtain the existence of a solution in the set

S = {u ∈ C(I) : ∃ t1, t2 ∈ I, u(t1) ≥ β(t1), α(t2) ≥ u(t2)}.

However the use of lower and upper solutions in boundary value problems

of the fourth order, even for the simple boundary conditions (1.2), is heavily

dependent of the positiveness properties for the corresponding linear operators.

Therefore we found it useful to investigate maximum principles for the operator

LMu := u(4) + Mu (1.3)

with the boundary conditions (1.2) and to apply them in a systematic way to

obtain existence theorems in presence of lower and upper solutions allowing the

case where they are not ordered.

The boundary value problem LMu = h with (1.2) describes the bending of

a beam which is attached to an elastic support; u denotes the deviation of the

beam under the continuous load function h, and M is an elasticity constant (see

[12]).

Maximum principles for operators u(4) and u(4) + g(x)u′′′+ h(x)u′′ with the

boundary conditions

u′(0) ≥ 0, u′(1) ≤ 0,

were given in [5, 10], respectively. On the other hand operator (1.3) with periodic

boundary conditions was studied in [4]. However less attention seems to be paid

to problem (1.3)-(1.2). In [12] the values of M for which (1.3)-(1.2) is inverse-

positive are characterized. We do a more detailed analysis showing also a range

of values of M for which (1.3)-(1.2) is inverse-negative and we also study (1.3)

with the non homogeneous boundary conditions

u(0) = a, u(1) = b, u′′(0) = c, u′′(1) = d,

which shall allow us to consider a wider set of lower and upper solutions. These

properties of fourth order linear operators are collected in section 2.
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Although these maximum principles seem interesting in themselves, our main

purpose is achieved in section 3, where we apply them to prove the existence and

multiplicity of solutions for the nonlinear fourth order boundary value problem

(1.1) – (1.2), in the presence of nonordered lower and upper solutions.

In our work we shall use the following special case of the “three solutions

theorem” due to H. Amman [1, Corollary of Theorem 2].

Theorem 1.1 Let X be a closed, bounded, convex subset of a Banach space

and let X1, X2 be disjoint, closed, convex subsets of X. Let T : X → X be a

completely continuous and suppose there exist open subsets O1, O2 of X with

Oi ⊂ Xi, i = 1, 2. Moreover suppose that T (Xi) ⊂ Xi and that T has no

fixed points on Xi \ Oi, i = 1, 2. Then T has at least three distinct fixed points

x, x1, x2 with xi ∈ Xi, i = 1, 2, and x ∈ X \ (X1

⋃
X2).

In the sequel we denote by I = [0, 1] and use the following notation: for all

u, v ∈ C([a, b]) given, the symbol u � v means that there exists t0 ∈ [a, b] such

that u(t0) > v(t0), and the symbol u � v means that u(t) ≤ v(t) for all t ∈ [a, b]

and there exists t0 ∈ [a, b] such that u(t0) < v(t0).

2 Maximum principles for the operator u(4)+Mu

Consider the boundary value problem
{

u(4)(t) + Mu(t) = h(t), for all t ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(2.1)

Let B ⊂ C4(I) and define the operator LM : B → C(I) given by

[LMu](t) := u(4)(t) + Mu(t) for all t ∈ I.

We say that LM is inverse-positive in B if

u ∈ B, [LMu](t) ≥ 0 for all t ∈ I =⇒ u(t) ≥ 0 for all t ∈ I,

and LM is strongly inverse-positive in B if it is inverse positive in B and

u ∈ B, LMu 	 0 in I =⇒ u(t) > 0 in (0, 1).
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Figure 1: G3.7(t, s)

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6

0.8

1

-0.006
-0.004
-0.002

0

0
0.2

0.4
0.6

0.8
1

Figure 2: G4.5(t, s)

The definitions of inverse-negative and strongly inverse-negative are sim-

ilar by reversing the last inequality in the corresponding definition.

In the next results we study the values of M ∈ R for which the previous

properties hold in suitable domains of Banach spaces.

Proposition 2.1 Define W0 = {u ∈ C4(I) : u(0) = u(1) = u′′(0) = u′′(1) =

0}. The following statements hold:

(i) LM is strongly inverse-positive in W0 ⇐⇒ −π4 < M ≤ c0;

(ii) − c0
4 ≤ M < −π4 =⇒ LM is strongly inverse-negative in W0.

Here c0 = 4 k4
0 ≈ 950.8843 and k0 ≈ 3.9266 is the smallest positive solution of

the equation tan k = tanh k .

Proof. For part (i) see [12], Chapter 2, Section 4.1.3.

To prove (ii) we note that the computation of the Green’s function leads to

the expression

Gm(t, s) =





csc(m) sin(m−mt) sin(ms)− csch(m) sinh(m−mt) sinh(ms)
2m3

, 0 ≤ s ≤ t ≤ 1,

csc(m) sin(m−ms) sin(mt)− csch(m) sinh(m−ms) sinh(mt)
2m3

, 0 ≤ t ≤ s ≤ 1,

where m = 4
√−M .

We shall prove that if π < m ≤ k0 then Gm(t, s) < 0 for all t, s ∈ (0, 1).

From the fact that k0 < 2 π, we have that csc(m) < 0, so, since the Green’s
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function Gm is symmetric and sinh(m) > 0, we only must show that for all

t, s ∈ (0, 1)

sin(mt) sin(m(1− s)) sinh(m)− sin(m) sinh(m(1− s)) sinh(mt) > 0,

which making τ = 1− s is equivalent to

sin(mt) sin(mτ)
sin(m)

<
sinh(mt) sinh(mτ)

sinh(m)
for all t, τ ∈ (0, 1).

Clearly it suffices to consider the case sin(mτ) > 0 and sin(mt) < 0. Since

sin(x) < sinh(x) for all x > 0 it is enough to prove that

sin(mt)
sinh(mt)

>
sin(m)
sinh(m)

for all t ∈ (0, 1). (2.2)

But this inequality follows immediately from the fact that the derivative of
sin(x)
sinh(x)

is strictly negative in (0, k0). Therefore since mt < m ≤ k0 we have

that (2.2) holds. ut

Remark 2.1 We remark that in fact it is proven in [12] that for −π4 < M ≤ c0

the operator LM is “strictly” inverse positive, meaning that, LMu 	 0 in I

implies u(t) > 0 in (0, 1) and u′(0) > 0 and u′(1) < 0. This might be seen also

studying the sign of partial derivatives of the Green’s function.

The analogous property holds for case (ii) in the previous proposition, that

is, if −c0
4 ≤ M < −π4 then LMu 	 0 in I implies u(t) < 0 in (0, 1), u′(0) < 0

and u′(1) > 0. In this case we use (2.2) in the study of the sign of the partial

derivatives of the Green’s function.

We shall use these properties in the final theorem of the paper.

Remark 2.2 We note that proposition 2.1 has some analogy with the corre-

sponding results for fourth order periodic problems (see theorem 4.1 and lemma

4.1 in [4]).

In the following theorems we give some comparison principles for operator

LM with a different type of non homogeneous boundary conditions. Before

doing that, we state the following lemma.
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Lemma 2.1 Let h be a continuous function and a, b, c, d ∈ R be fixed. Assume

that problem {
u(4)(t) + M u(t) = h(t), for all t ∈ I,

u(0) = a, u(1) = b, u′′(0) = c, u′′(1) = d,
(2.3)

has only the trivial solution for h ≡ 0 and a = b = c = d = 0. Then (2.3) has a

unique solution given by the following expression:

u(t) =
∫ 1

0

Gm(t, s)h(s) ds+a xm(t)+ b xm(1− t)+ c ym(t)+d ym(1− t), (2.4)

where we denote M = ±m4 (depending on the sign of M) and xm and ym are

defined respectively as the unique solutions of the following problems
{

w(4)(t) + M w(t) = 0, for all t ∈ I,

w(0) = 1, w(1) = w′′(0) = w′′(1) = 0,
(2.5)

and {
w(4)(t) + M w(t) = 0, for all t ∈ I,

w(0) = w(1) = 0, w′′(0) = 1, w′′(1) = 0.
(2.6)

In the sequel, we shall prove different maximum principles for the case M ≥
0.

Theorem 2.1 Let M ≥ 0. Then the linear operator LM is strongly inverse

positive in the space

W1 = {u ∈ C4(I) : u(0) ≥ 0, u(1) ≥ 0, u′′(0) = u′′(1) = 0}

if and only if 0 ≤ M ≤ c1, where c1 = 4 k4
1 ≈ 125.137 and k1 ≈ 2.365 is the

smallest positive solution of the equation tan k = − tanh k .

Proof. One can verify, by explicit calculation, that function xm, defined as

the unique solution of (2.5), is given for m > 0 by

xm(t) =
− cos

(
mt√

2

)
cosh

(
m(t−2)√

2

)
+ cos

(
m(t−2)√

2

)
cosh

(
mt√

2

)

cos
(√

2m
)− cosh

(√
2m

) (2.7)

and x0(t) = 1− t.

Claim. xm ≥ 0 in I ⇐⇒ m ∈ [0,
√

2k1].

7



First we observe that xm can not have a double zero in (0, 1), since xm is

the minimizer of the functional
∫ 1

0

(
w′′2(s) + Mw2(s)

)
ds

in H2(0, 1) with the boundary conditions w(0) = 1 and w(1) = 0; if t0 ∈ (0, 1)

is a double zero of xm then xm(t) = 0 for all t ∈ [t0, 1], which is impossible.

Next we remark that

x′m (1) =

√
2m

(
cosh

(
m√
2

)
sin

(
m√
2

)
+ cos

(
m√
2

)
sinh

(
m√
2

))

cos
(√

2m
)− cosh

(√
2m

) ,

from which we conclude that x′m(1) < 0 for all 0 < m <
√

2k1 being
√

2k1 the

first positive zero of the equation x′m(1) = 0.

1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0.2

Figure 3: The function x′m(1)

Now suppose that for some 0 < m ≤ √
2k1 the function xm takes negative

values. Using a continuity argument and taking the infimum of such values of

m > 0 we obtain a 0 < m̄ <
√

2k1 such that xm̄ has a double zero which is

different from 1 since x′m̄(1) < 0, but this is a contradiction.

Let m >
√

2k1 be fixed. We shall prove that xm has a zero in (0, 1) and,

since the zero must be simple, xm changes sign. In view of (2.7) we have that

xm(t) = 0 if and only if h(t) := f(t)− f(t− 2) = 0 where

f(t) =
cos

(
mt√

2

)

cosh
(

mt√
2

) .
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It is easy to see that cos s
cosh s has its unique absolute maximum at s = 0 and an

absolute minimum at s = k1. Therefore h(0) > 0 and h(
√

2k1
m ) ≤ 0. Since

√
2k1
m < 1 the result follows from Bolzano’s theorem.

Now we are in a position to prove the theorem: if LM is strongly inverse

positive in W1 then clearly xm must be positive in I and, by the claim, 0 <

M ≤ c1. Conversely if 0 < M ≤ c1, since c1 < c0, the conclusion follows by the

claim, expression (2.4) and proposition 2.1 (i). ut

Now, we improve the previous result to the particular case of functions u

that attain the same non negative value at the endpoints of the interval.

Theorem 2.2 Let M ≥ 0. Then the linear operator LM is strongly inverse

positive in the space

W2 = {u ∈ C4(I) : u(0) = u(1) ≥ 0, u′′(0) = u′′(1) = 0},

if and only if 0 ≤ M ≤ 4 π4 ≈ 389.636.

Proof. Since 0 ≤ M ≡ m4 ≤ 4 π4 < c0, it follows from Proposition 2.1, (i)

that Gm > 0 in (0, 1) × (0, 1). Thus, by using equation (2.4), it is enough to

prove that function

wm(t) = xm(t) + xm(1− t)

is nonnegative in I if and only if m ∈ [0,
√

2 π].

One can verify, by explicit calculation, that w0 ≡ 1 and, for all m > 0,

function wm is given by the following expression:

wm(t) =
[
− cos

(
mt√

2

)
cosh

(
m(t−2)√

2

)
+ cos

(
m(t+1)√

2

)
cosh

(
m(t−1)√

2

)

+cos
(

m(t−2)√
2

)
cosh

(
mt√

2

)
− cos

(
m(t−1)√

2

)
cosh

(
m(t+1)√

2

)]

/
[
cos

(√
2m

)− cosh
(√

2m
)]

Claim 1.- If wm(t) ≥ 0 for all t ∈ I then min
t∈I

wm(t) = wm(1/2).

From the definition, if is obvious that function wm is symmetric with re-

spect to t = 1/2. Moreover if wm(t) ≥ 0 then w′′m is concave and then using

the boundary conditions we conclude that wm is convex. Therefore the claim

follows.
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Claim 2.- The set A = {m ≥ 0 : wm ≥ 0 in I} is an interval.

Clearly A is nonempty because 0 ∈ A. If m1 ∈ [0,
√

2 k0] is such that m1 ∈ A

and 0 ≤ m2 < m1 then m2 ∈ A. Indeed, from the equations
{

w
(4)
i + m4

i wi = 0,

wi(0) = wi(1) = 1, w′′i (0) = w′′i (1) = 0,

for i = 1, 2, it follows that w = w2 − w1 satisfies the problem
{

w(4) + m4
2w = (m4

1 −m4
2)w1 	 0,

w(0) = w(1) = 0, w′′(0) = w′′(1) = 0.

Hence by Proposition 2.1, (i) we obtain that w2 > w1 in (0, 1) and, as

consequence, m2 ∈ A.

Since

wm

(
1
2

)
=

2 cos
(

m
2
√

2

)
cosh

(
m

2
√

2

)

cos
(

m√
2

)
+ cosh

(
m√
2

) ,

the preceding argument shows that m1 >
√

2k0 and m1 ∈ A is impossible:

otherwise we obtain that m2 ∈ A for all m2 ∈ (
√

2π,
√

2k0) but wm2(1/2) < 0

for all m2 ∈ (
√

2π,
√

2k0). Therefore A is an interval contained in [0,
√

2 k0].

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

Figure 4: The function wm(1/2)

Claim 3.- A = [0,
√

2 π]

By continuity A is a closed interval [0, l]. If l <
√

2π then wl(t) ≥ wl(1/2) >

0 for all t ∈ I, and again by continuity wm ≥ 0 for all m in a small enough right

neighborhood of l, a contradiction. On the other hand l >
√

2 π is impossible

because wm(1/2) < 0 in a right neighborhood of
√

2 π. ut
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To study the case in which the solution of problem (2.3) vanishes at t = 0

and t = 1 but the second derivatives at such points could be different from zero,

we must study the function ym defined as the unique solution of (2.6).

Theorem 2.3 Let M ≥ 0. Then the linear operator LM is strongly inverse

positive in the space

W3 = {u ∈ C4(I) : u(0) = u(1) = 0, u′′(0) ≤ 0, u′′(1) ≤ 0}, (2.8)

if and only if 0 ≤ M ≤ c0, where c0 ≈ 950.8843 is given in Proposition 2.1 (i).

Proof. It is enough to take into account that

ym(t) =
− sin

(
mt√

2

)
sinh

(
m(t−2)√

2

)
+ sin

(
m(t−2)√

2

)
sinh

(
mt√

2

)

m2
(
cos

(√
2m

)− cosh
(√

2m
)) ,

y′m(1) =

√
2e

m√
2

((
1− e

√
2m

)
cos

(
m√
2

)
+ (1 + e

√
2m) sin

(
m√
2

))

m (1 + e2
√

2 m − 2e
√

2m cos (
√

2 m))
and use similar arguments to those of the proof of proposition 2.1 (i) and the-

orem 2.1. ut

Remark 2.3 Note that, contrary to Theorem 2.2, in this situation we do not

consider the case u′′(0) = u′′(1) ≥ 0, because now we have the same estimate as

in Proposition 2.1 (i), and so the result cannot be improved.

As a conclusion of these previous results we arrive at the following corollaries.

Corollary 2.1 Let M ≥ 0. Then the linear operator LM is strongly inverse

positive in the space

W4 = {u ∈ C4(I) : u(0) ≥ 0, u(1) ≥ 0, u′′(0) ≤ 0, u′′(1) ≤ 0}

if and only if 0 ≤ M ≤ c1, where c1 is defined in theorem 2.1.

Corollary 2.2 Let M ≥ 0. Then the linear operator LM is strongly inverse

positive in the space

W5 = {u ∈ C4(I) : u(0) = u(1) ≥ 0, u′′(0) ≤ 0, u′′(1) ≤ 0}

if and only if 0 ≤ M ≤ 4 π4 ≈ 389.636.
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For the case M = −m4 < 0 a detailed analysis of the functions xm, wm

and ym discloses that xm and wm always change sign and ym ≥ 0 if and only if

m ∈ (π, k0]. We state without proof the conclusion in this case.

Theorem 2.4 Let − c0
4 ≤ M < −π4, where c0 is given in proposition 2.1.

Then the linear operator LM is strongly inverse negative in the space W3

defined in (2.8).

3 Some applications to nonlinear boundary value

problems

In this section we deal with the problem (1.1) – (1.2) with f : I × R → R a

continuous function.

For the purpose of this paper we shall use the following definitions.

Definition 3.1 We say that α ∈ C4(I) is a lower solution of problem (1.1) –

(1.2) if

α(4)(t) ≤ f(t, α(t)) for all t ∈ I,

α(0) ≤ 0, α(1) ≤ 0, α′′(0) ≥ 0, α′′(1) ≥ 0.

Further, α ∈ C4(I) is a strict lower solution if it is a lower solution and,

moreover

α(4)(t0) < f(t0, α(t0)) for some t0 ∈ I.

The concept of an upper (strict upper) solution β ∈ C4(I) is similar by

reversing the above inequalities.

Before proving existence results for problem (1.1) – (1.2), we consider the

following inequalities that will appear in the remaining of the paper:

(L1) f(t, α(t)) + Mα(t) ≤ f(t, u) + Mu ≤ f(t, β(t)) + Mβ(t), α(t) ≤ u ≤ β(t),

(L2) f(t, α(t))−Mα(t) ≤ f(t, u)−Mu ≤ f(t, β(t))−Mβ(t), β(t) ≤ u ≤ α(t).
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Proposition 2.1 coupled with Theorems 2.1, 2.2, 2.3 and 2.4 allows us to ob-

tain the following existence result in the presence of ordered lower and upper

solutions.

Theorem 3.1 Suppose that f : I ×R→ R is a continuous function. Let α and

β be lower and upper solutions, respectively, for problem (1.1) – (1.2). Then we

have the following results:

(I) If α ≤ β and moreover there exists 0 ≤ M ≤ c1 for which property (L1)

holds, then there exists a solution u of (1.1) – (1.2) in [α, β].

(II) If α ≤ β, α(0) = α(1) = β(0) = β(1) = 0, and moreover there exists

0 ≤ M ≤ c0 for which property (L1) holds, then there exists a solution u

of (1.1) – (1.2) in [α, β].

(III) If α ≤ β with α(0) = α(1) ≤ 0 ≤ β(0) = β(1) and moreover there exists

0 ≤ M ≤ 4 π4 for which property (L1) holds, then there exists a solution

u of (1.1) – (1.2) in [α, β].

(IV) If at least one of the conditions (I), (II) or (III) holds and the lower

solution α (resp. the upper solution β) is strict and u ∈ [α, β] is any

solution of problem (1.1) – (1.2) then α(t) < u(t) for all t ∈ (0, 1) (resp.

β(t) > u(t) for all t ∈ (0, 1)).

(V) If β ≤ α, α(0) = α(1) = β(0) = β(1) = 0, and moreover there exists

π4 < M ≤ c0
4 for which property (L2) holds, then there exists a solution u

of (1.1) – (1.2) in [β, α].

Moreover if the lower solution α (resp. the upper solution β) is strict and

u ∈ [β, α] is any solution of problem (1.1) – (1.2) then α(t) > u(t) for all

t ∈ (0, 1) (resp. β(t) < u(t) for all t ∈ (0, 1)).

Proof. We shall prove only part (I) because the proofs of the other ones are

similar.
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We define KM : C(I) → C(I) in the following way: for each h ∈ C(I) let

KMh be the unique solution of problem
{

u(4)(t) + Mu(t) = h(t) for all t ∈ I,

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0.

Let NM : C(I) → C(I) be the Nemytskii operator given for each h ∈ C(I) by

(NMh)(t) = f(t, h(t)) + Mh(t) for all t ∈ I,

and finally we define TM : C(I) → C(I) as

TM = KM ◦NM , (3.1)

that is, for each h ∈ C(I) the function TMh is the unique solution of problem
{

u(4)(t) + Mu(t) = f(t, h(t)) + Mh(t) for all t ∈ I,

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0.

Clearly the operator TM is completely continuous.

We consider in C(I) the pointwise partial ordering

u, v ∈ C(I), u ≤ v ⇐⇒ u(t) ≤ v(t) for all t ∈ I,

and for u ≤ v we define the functional interval

[u, v] = {w ∈ C(I) : u ≤ w ≤ v}.

Claim 1.- KM : C(I) → C(I) is nondecreasing.

Let h1, h2 ∈ C(I) with h1 ≤ h2 and put ui = KMhi, i = 1, 2. Then

w = u2 − u1 satisfies
{

w(4)(t) + Mw(t) = h2(t)− h1(t) ≥ 0 for all t ∈ I,

w(0) = w(1) = 0, w′′(0) = w′′(1) = 0,

and since 0 ≤ M ≤ c1 < c0, from Proposition 2.1, (i) it follows that w ≥ 0 and

hence u1 ≤ u2.

Claim 2.- α ≤ TMα and TMβ ≤ β.

Since α is a lower solution we have that

(TMα)(4)(t)+M(TMα)(t) = f(t, α(t))+Mα(t) ≥ α(4)(t)+Mα(t) for all t ∈ I.
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Thus w = TMα− α satisfies that
{

w(4)(t) + Mw(t) ≥ 0 for all t ∈ I,

w(0) ≥ 0, w(1) ≥ 0, w′′(0) ≤ 0, w′′(1) ≤ 0,

and then by Corollary 2.1 we deduce that w = TMα− α ≥ 0.

In an analogous way we can prove that TMβ ≤ β.

Claim 3.- TM ([α, β]) ⊂ [α, β].

Let u ∈ [α, β]. By our hypothesis we have that

f(t, α(t)) + Mα(t) ≤ f(t, u) + Mu ≤ f(t, β(t)) + Mβ(t), for all t ∈ I,

and by Claim 1 we deduce that

TMα ≤ TMu ≤ TMβ.

Finally Claim 2 implies that TMu ∈ [α, β].

Conclusion.- The interval [α, β] is a closed, convex, bounded and nonempty

subset of the Banach space C(I). Then by Claim 3 we can apply Schauder’s fixed

point theorem to obtain the existence of a fixed point of TM , which obviously

is a solution of problem (1.1) – (1.2) in [α, β].

Note that if condition (IV) holds, from the strongly inverse positive character

of operator LM in W4, we deduce from Claims 1 – 3 that α < TMu in (0, 1). ut

Remark 3.1 1. It is well know that for a second order differential equation,

with periodic, Neumann or Dirichlet boundary conditions, the existence of a

well ordered pair of lower and upper solutions α ≤ β is enough to ensure the

existence of a solution in the sector enclosed by them (see [6]).

However this result it is not true for problem (1.1) – (1.2) as we shall show

following some ideas of [3]. Indeed, let M1 > c0. By Proposition 2.1, (i) we

know that LM1 is not inverse positive on W0. Then there exists h ∈ C(I), h ≥ 0,

such that the solution of
{

u(4)(t) + M1u(t) = h(t) for all t ∈ I,

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0,
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is not positive. Moreover we can choose h(t) ≤ 1 (dividing by ‖h‖∞ if it is

necessary).

Clearly, α(t) = 0 ≤ β(t) = 1 are lower and upper solutions for the problem
{

u(4)(t) = f(t, u(t)) ≡ −M1u(t) + h(t) for all t ∈ I,

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0,

but its unique solution u satisfies u � 0 = α and therefore there is no solution

between α and β.

2. We point out that all the statements of Theorem 3.1 can be established in

the framework of L1-Carathéodory functions.

3. We also remark that if we replace conditions (L1) and (L2) in the previous

theorem by the corresponding ones

(L∗1) f(t, u)− f(t, v) ≤ M(v − u) for all t ∈ I and all α(t) ≤ u ≤ v ≤ β(t),

(L∗2) f(t, v)− f(t, u) ≤ M(v − u) for all t ∈ I and all β(t) ≤ u ≤ v ≤ α(t),

we can develop the monotone method obtaining a stronger result, namely, the ex-

istence of monotone sequences which converge to the extremal solutions between

the lower and the upper solution (or between the upper and the lower solution

in case (V)).

As a first consequence of the previous theorem we obtain the following result.

Proposition 3.1 The operator LM is strongly inverse negative on W0 if and

only if M ∈ [−c0/4,−π4).

Proof. Using Proposition 2.1 (ii), we only must prove the first implication. To

this end, define

B = {m > π, such that L−m4 is strongly inverse negative in W0}.

We will prove that B is an interval.

Let m1 < m2 belonging to B, assume that m3 ∈ (m1,m2).

Fix h 	 0 a continuous function. From the definition of B, we know that the

unique solutions of problems L−m4
i
, ui = h, ui ∈ W0 satisfy ui < 0 in (0, 1),
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i = 1, 2. Moreover

L−m4
1
(u1 − u2) = (m4

1 −m4
2) u2 	 0, u1 − u2 ∈ W0,

and, as consequence, u1 < u2 in (0, 1).

By defining f(t, u) = m4
3 u + h(t) it is easy to verify that u1 is an upper

solution and u2 is a lower solution of the corresponding problem. Moreover,

function f satisfies condition (L2) for M ≡ m4
2. So we are in the hypotheses of

Theorem 3.1 (V) and, as a consequence, the equation L−m4
3
u = h, u ∈ W0

has a solution u3 ∈ (u2, u1), in particular u3 < 0 in (0, 1).

In particular we have shown that the operator L−m4
3

restricted to W0 has

range equal to C(I). By the linear Fredholm alternative the operator L−m4
3

is

invertible and then m3 ∈ B.

Now, by using the expression of Gm (Gm given in Proposition 2.1), we arrive

at
d

d t
Gm(t, t) =

csc(m) sin(m(1− 2 t))− csch(m) sinh(m(1− 2t))
2m2

.

It is easy to verify, using the fact that sin x
sinh x becomes increasing in a right

neighborhood of k0 (cf. the proof of proposition 2.1), that there exist ε > 0 such

that d
d tGm(t, t) > 0 for all t ∈ (0, ε) and m ∈ (k0, k0 + ε). So B = (π, 4

√
c0/4].

ut

As a consequence of theorem 2.4 and proposition 3.1 we deduce the following

result.

Corollary 3.1 The operator LM is strongly inverse negative on W3 if and

only if M ∈ [−c0/4,−π4).

In the following theorem we give existence and multiplicity results in presence

of lower and upper solutions. In order to simplify the proof we consider the case

where the lower and the upper solutions take equal values at the end points of

I. However a similar theorem can be proved in the more general case replacing

the constant 4π4 with c1.
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Theorem 3.2 Suppose that f : I × R → R is a continuous function such that

for some A > 0 we have

|f(t, x)| ≤ A for all (t, x) ∈ I × R,

and for some 0 ≤ M ≤ 4π4

f(t, x)− f(t, y) ≤ M(y − x) for all t ∈ I and x ≤ y.

Then the following results hold:

(i) (A priori bounds and existence of solutions) The problem (1.1) – (1.2)

has a solution and moreover there exists k > 0 such that any solution u

of problem (1.1) – (1.2) satisfies ‖u‖∞ ≤ k.

(ii) (Localization of solutions)

1. If α is a lower solution with α(0) = α(1) then problem (1.1) – (1.2)

has a solution u satisfying

α(t) ≤ u(t) for all t ∈ I.

2. If β is an upper solution with β(0) = β(1) then problem (1.1) – (1.2)

has a solution u satisfying

u(t) ≤ β(t) for all t ∈ I.

(iii) (Multiplicity of solutions) Let α and β be lower and upper solutions with

α(0) = α(1) and β(0) = β(1) such that α � β. Then problem (1.1) – (1.2)

has at least two different solutions u1 and u2 with

α(t) ≤ u1(t) and u2(t) ≤ β(t) for all t ∈ I.

If moreover α and β are strict then there exist at least three different

solutions u1, u2 and u3, with

α(t) ≤ u1(t) and u2(t) ≤ β(t) for all t ∈ I,

and u3 ∈ S where

S = {u ∈ C([0, T ]) : ∃ t1 , t2 ∈ [0, T ], u(t1) ≥ β(t1), α(t2) ≥ u(t2)}. (3.2)
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Proof. (i).- Define the operator T : C(I) → C(I) given for each h ∈ C(I) by

Th(t) =
∫ 1

0

G0(t, s)f(s, h(s))ds for all t ∈ I,

where G0(t, s) is the Green’s function of the problem
{

u(4)(t) = σ(t) for all t ∈ I,

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0.

Clearly T is completely continuous and the fixed points of T are the solutions

of (1.1) – (1.2). On the other hand, since f is bounded there exists k > 0 such

that

‖Th‖∞ < k for all h ∈ C(I).

Then we have the a priori bounds on the solutions and moreover Schauder’s

fixed point theorem yields the existence of a solution of problem (1.1) – (1.2).

(ii).- We only write the proof for the first case because the second case is

similar.

Step 1.- The modified problem.

We fix 0 < ε < min{M,π4} and for each r > 0 we define

fr(t, u) =





f(t,−r)− ε(u + r), if u < −r,
f(t, u), if |u| ≤ r,
f(t, r)− ε(u− r), if u > r,

and consider the modified problem
{

u(4)(t) = fr(t, u(t)) for all t ∈ I,

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0,
(3.3)

Step 2.- There exists d > 0 such that any solution u of (3.3) is such that ‖u‖∞ ≤
d, independently of r.

By considering the odd extension of function u to the interval [−1, 1], we can

apply the classical Wirtinger – type inequality for functions g defined in a real

interval [a, b], that have an absolutely continuous first derivative on (a, b), its

Fourier series is uniformly convergent on (a, b), g(a) = g(b) and
∫ b

a
g(s) ds = 0

(see inequality (4.2) in [11, Chapter II]). So, we have

π4

∫ 1

0

u2(s)ds ≤
∫ 1

0

u′′2(s)ds. (3.4)
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On the other hand as f is bounded, there exists a constant C > 0 independent

of r such that

|fr(t, u)| ≤ ε|u|+ C for all (t, u) ∈ I × R,

and thus if u is a solution of (3.3), multiplying the equation by u and integrating

we have ∫ 1

0

u′′2(s)ds ≤ ε

∫ 1

0

u2(s)ds + C

∫ 1

0

|u(s)|ds. (3.5)

Now Holder’s inequality implies that
(∫ 1

0

|u(s)|ds

)2

≤
∫ 1

0

u2(s)ds. (3.6)

Then, since 0 < ε < π4, from (3.4), (3.5) and (3.6) it follows that u and u′′ are

bounded in L2(0, 1), independently of r.

Now since u(0) = u(1) there exists t0 ∈ (0, 1) such that u′(t0) = 0 and then

for all t ∈ I we have that

|u′(t)| = |u′(t)− u′(t0)| =
∣∣∣∣
∫ t

t0

u′′(s)ds

∣∣∣∣ ≤
∫ 1

0

|u′′(s)|ds ≤
(∫ 1

0

u′′2(s)ds

) 1
2

,

which implies that u′ is also bounded in L∞(0, 1), independently of r.

Finally from [2, Theorem VIII.7 and Proposition VIII.12] it follows that

‖u‖∞ ≤ C1‖u‖W 1,2 ≤ C2‖u′‖L2 ,

and therefore there exists d > 0, independently of r, such that

max{‖u‖∞, ‖u′‖∞} ≤ d.

Step 3.- There exists a solution u of (3.3) for all r large enough.

Let r > ‖α‖∞. It is easy to see that

β1(t) =
A

ε
+ r + 1,

is a strict upper solution and moreover for all t ∈ I we have

fr(t, α(t))+Mα(t) ≤ fr(t, u)+Mu ≤ fr(t, β1(t))+Mβ1(t) for α(t) ≤ u ≤ β1(t).

Now, by applying Theorem 3.1, (III), with fr instead of f the existence of a

solution in [α, β1] follows.
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Conclusion: By steps 1 and 2 taking r > d we obtain the existence of a solution

u ≥ α of (3.3) with ‖u‖∞ ≤ d < r. Hence u is also a solution of the original

problem (1.1) – (1.2).

(iii).- The existence of two solutions follows from (ii) and the fact that α � β.

Now suppose that α and β are strict. Choose r > max{d, ‖α‖∞, ‖β‖∞} and

define

α1(t) = −A

ε
− r − 1 and β1(t) =

A

ε
+ r + 1,

which clearly are strict lower and upper solutions, respectively, for the modified

problem with fr.

Let TM be given by (3.1) with fr instead of f .

1. If α(0) = α(1) < 0 and β(0) = β(1) > 0 we work in the space C(I) and set

X = {u ∈ C(I) : α1(t) ≤ u(t) ≤ β1(t) in I}

X1 = {u ∈ X : α(t) ≤ u(t) ≤ β1(t) in I},

X2 = {u ∈ X : α1(t) ≤ u(t) ≤ β(t) in I},

O1 = {u ∈ X : α(t) < u(t) < β1(t) in I},

O2 = {u ∈ X : α1(t) < u(t) < β(t) in I}.

2. If (to fix ideas) α(0) = α(1) = 0 and β(0) = β(1) > 0 (the remaining

cases being treated with the obvious changes), we then work in the space

C1
0(I) := {u ∈ C1(I) : u(0) = u(1) = 0} where we set

X = {u ∈ C1
0(I) : α1(t) ≤ u(t) ≤ β1(t) in I, ‖u′‖∞ ≤ D},

X1 = {u ∈ X : α(t) ≤ u(t) ≤ β1(t) in I},

X2 = {u ∈ X : α1(t) ≤ u(t) ≤ β(t) in I},

O1 = {u ∈ X : α(t) < u(t) < β1(t) in (0,1), u′(0) > α′(0), u′(1) < α′(1), }

O2 = {u ∈ X : α1(t) < u(t) < β(t) in (0,1)}

where D > max{d, sup
α1<h(t)<β1

‖TMh‖C1(I)}.
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In any case Xi is a closed, bounded, convex subset of X and Oi is an open

set with Oi ⊂ Xi. Moreover TM (Xi) ⊂ Xi, i = 1, 2. We claim that TM has no

fixed point in Xi \ Oi, i = 1, 2. Indeed, if u ∈ X1 is a fixed point of TM then

the function z = u− α satisfies the inequality z(4) + Mz 	 0 in I and moreover

z(0) = z(1) = z′′(0) = z′′(1) = 0. Then by Proposition 2.1, (i) and remark 2.1

we obtain that in any case u ∈ O1. The same is true for X2 and O2. Therefore

Theorem 1.1 implies the existence of three solutions with the desired properties.

ut

Remark 3.2 We can state a similar theorem if we suppose that for some π4 <

M ≤ c0
4

f(t, x)− f(t, y) ≥ M(x− y) for all t ∈ I and x ≤ y,

the lower and the upper solutions satisfy

α(0) = α(1) = 0 and β(0) = β(1) = 0

and moreover in the case (iii) we have β 
 α. The conclusions are similar by

reversing the inequalities.

Example 3.1 Consider the function f : I × R→ R defined by

f(t, u) = (16π4 + 2 sin(2πt))δ(u) + 2 cos2(2πt)− 2 + g(u),

where δ : R→ R is given by

δ(u) =





−1, if u < −1,
u, if |u| ≤ 1,
1, if u > 1,

and g : R→ R satisfies that g(0) = 0, 0 < g(u) < 1 for all u 6= 0 and for some

M ∈ [0, 4 π4] the function g(u) + Mu is increasing in u.

It is easy to check that α(t) = sin(2πt) and β(t) = 0 for all t ∈ I are strict

lower and upper solutions, respectively, and α 
 β. Moreover f satisfies the

conditions of Theorem 3.2, (iii) and therefore it follows the existence of at least

three solutions for problem (1.1) – (1.2).
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