A generalization of Montel-Tonelli’s Uniqueness Theorem
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Abstract

We present a new uniqueness result for first order systems of ordinary differential equations which
contains a generalization of Montel-Tonelli’s Uniqueness Theorem as a particular case. An example is

given to illustrate its applicability.
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1 Introduction

Let a,b € (0,4+00), U = [to,to+a] x {x € R™ : ||z —x0|| < b} and let f : U C R"™' — R be continuous

on U. This paper considers uniqueness of solutions for the initial value problem
' = f(t,z), xz(to) = zo. (1.1)

One of the more general uniqueness theorems is due to Kamke, see [1, Theorem 3.8.1] or [5, Theorem

6.1], who improved an earlier version by Perron.

THEOREM 1.1 [Kamke’s Uniqueness Theorem] Assume that for all (t,z), (t,y) € U, t # to, we have

£t z) — F(ty)ll < g(t —to, |z —yl), (1.2)
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for some continuous function g : (0,a] x [0,2b] — [0, +00) such that for every ¢ € (0,a), z(t) =0 is
the only solution of
t
x'(t) = g(t,x(t)) forallt € (0,c), and lim z(t) =0. (1.3)
t—0t+ ©

Then the initial value problem (1.1) has at most one solution in [to,to + al.

While many uniqueness results follow from Kamke’s Theorem (e.g. Lipschitz’s, Osgood’s, and
many more, see [1, Corollary 1.15.6]), its conditions are in general difficult to check. In this paper
we introduce novel conditions on the function g(¢,x) which imply that it satisfies the assumptions in
Kamke’s Theorem, thus getting new applicable criteria for the uniqueness of (1.1). In particular, we

are going to improve on Montel-Tonelli’s Uniqueness Theorem [1, Theorem 1.5.1].

THEOREM 1.2 [Montel-Tonelli’s Uniqueness Theorem] Assume that for all (t,x), (t,y) € U, t # to,

we have
1 f(t,x) = f(t )l < p(t—to)d([lz —yl), (1.4)

where p : (0,a] — (0, +00) is integrable, and 1 : [0,2b] — [0, +00) is continuous and

dr
/0+ o) +o0. (1.5)

Then the initial value problem (1.1) has at most one solution in [to, to + a].

2 New uniqueness criteria

The main result in this paper extends Montel-Tonelli’s Uniqueness Theorem by letting 1) depend also

on the ¢ argument in (1.4).

THEOREM 2.1 A continuous function g : (0, a] X [0,2b] — [0, 4+00) satisfies the conditions of Kamke’s
Uniqueness Theorem provided that g(t,xz) > 0 if x > 0 and g(t,z) < p(t)y(t,z), where p : (0,a] —

(0, 4+00) is measurable, v : (0,a] x [0,2b] — [0, +00) is continuous and satisfies the following properties:
(i) ¥(t,0) =0 for all t € (0,al;
(%) 1 is nonincreasing with respect to its first variable; and

(i41) For every increasing and differentiable function wu : (t1,t2] C (0,a] — (0,2b) such that

lim 0 _ g, (2.6)

tth t—1h

[ (27)
lim sup / 7/ p(s)ds | > 0. 2.7
t—>tT w(t) ¢'(7"»7") t

Proof. Reasoning by contradiction, we assume that z(t) is a nontrivial solution of (1.3). We can then

we have

find ¢1,t2 € [0,a] such that z(¢1) = 0 and z(¢) > 0 for all ¢ € (¢1, t2].
The assumptions imply that z'(t) = g(¢,z(¢)) > 0 for all ¢ € (¢1, ¢2], and therefore z is increasing.



If t7 = 0, then x(t) satisfies (2.6) because it is a solution of (1.3); otherwise, we deduce from

L’Hopital’s rule that

lim z(®) = lim 2'(t) = lim+ g(t,z(t)) = g(t1,0) = 0.

totb b=t et t—t]
Hence z(t) satisfies (2.6). In particular, we can assume without loss of generality that 0 < z(t) < t for
all t € (t1,t2] and, therefore, 7" (r) > r for all r € (0, z(t2)].

For every t € (t1,t2) we have x’(t) < p(t)y(t,z(t)), and then the change of variables formula yields

[ weaez [ O [

Since 1 is nonincreasing with respect to its first argument, and == (r) > r on (0, z(t2)], we deduce

that
[Foasz [ (11,82
pstZ/ for every t € (t1,t2],
t z(t) w(Ta T)
and we obtain a contradiction with (2.7) with u(t) = z(t). O

Theorem 2.1 is a variant of [2, Theorem 3.1], less general but easier to prove and, we intend to
show, easier to apply. Taking p(t) = 1/t and 9 (¢,z) = z in Theorem 2.1 we obtain as a particular
case the celebrated Nagumo’s uniqueness theorem, see [1, Theorem 1.6.2], that has attracted a renewed
interest in recent years, see [3, 4, 6, 7). As an immediate consequence of Theorem 2.1 we also obtain

the following generalization of Montel-Tonelli’s Uniqueness Theorem.

THEOREM 2.2 Problem (1.1) has at most one solution in [to, to + a] provided that

1t 2) = F(&y)ll < p(t —to)p(t —to, [l —yll)  for all (t,2),(t,y) € U, t # to, (2.8)

where p : (0,a] — (0,+00) is integrable, ¥ : (0,a] x [0,2b] — [0,4+00) is continuous, ¥ satisfies

conditions (i) and (i) in Theorem 2.1, and

dr
/o+ o) +00. (2.9)

Theorem 2.2 is a strict generalization of Montel-Tonelli’s Theorem as we emphasize in our next

corollary. Notice that it is based on conditions which replace Lipschitz constants by certain noninte-
grable functions of ¢, thus falling outside the scope of Montel-Tonelli’s Theorem, and providing us with

a criterion in the spirit of Nagumo’s.

COROLLARY 2.1 Problem (1.1) has at most one solution in [to,to + a] provided that for some ¢ > 0 we

have
c
t,x) — f(t, <———— |z — or all (t,x),(t,y) € U, t # to, 2.10
I£(t.2) = 1D < el —vll forall (o) (6p) €U, t 400, (210)
where h : (0,a] — (0,400) is continuous, nonincreasing and satisfies
/ #dt <400 and Ldt = 400
o+ th3(t) o+ th(t) .
Proof. Use Theorem 2.2 with p(t) = thQC(t) and ¥ (t,z) = h(t) x. O



The particular choice h(t) =1 —Int for ¢t € (0, e) provides the following consequence.

COROLLARY 2.2 Problem (1.1) has at most one solution in [to,to + a] for any a € (0,¢€), provided that
for some ¢ > 0 we have

1£62) = FEDN < ooy |7 forall o) (L) €U, t#10. (21)

Other functions can be used in (2.11) instead of ¢/[(t — to)(1 — In (¢t — to))].

COROLLARY 2.3 Problem (1.1) has at most one solution in some [to,to + a] C [to,to + a] provided that

£t x) = f(ty)ll < gt —to)llz —yll for all (t,2),(t,y) € U, t # to, (2.12)
where q : (0,a] — (0,400) is continuous and
limsupq(t)t (1 —Int) < +oo. (2.13)
t—0+

Proof. Condition (2.13) implies the existence of constants ¢ > 0 and a € (0, a] such that

q(t) < c

————  for all G
ST or all ¢ € (0,a],

and therefore we can apply Theorem 2.2 on [to, to + a]. |
Finally, we show an example of the applicability of Corollaries 2.2 and 2.3.

EXAMPLE 2.1 We are going to study the existence and uniqueness of solutions for

o =alz|+ 22 (y—dInt)2, t>0, x(0)=0, (2.14)

where a, B,y and § are positive constants. Notice that we have more than one solution if B = 0, e.g.
z(t) =0 and z(t) = at? /4.
First, we rewrite the previous problem in terms of (1.1) with to = 0: we fix a € (0,1) and b > 0,

and we define

\/a|x\ + 8282 (y — d1Int)?, if (t,x) € (0,a] x [=b, ],
f(t,z) =
Vvalzl, ift=0 and x € [-),D].

This function f is continuous on [0,a] x [—b,b]. Since f(t,x) is sublinear in x, we can assume that
b > 0 is sufficiently large so that (1.1) with to = 0 has at least one solution on the whole of [0,a], and
such a solution is necessarily positive on (0, al.

Now for the uniqueness. If t € (0,a] and |z| < |y| < b, then there is some z € (|x|,|y|) such that

e
2/ az+ B2t (v — §1nt)?

Therefore, we can use Corollary 2.3 with

[f(t,x) = f(ty)| =

|||

|z — yl.

a
— < *
il < 28t(y—9d1Int)

t)=-— 2
B = 98t (v —ont)’

to ensure that (1.1) has a unique solution on some [0,a] C [0,a] (in fact we have uniqueness on [0,al:
the solution x(t) cannot bifurcate at any t € (a,a] because the classical Lipschitz’s Theorem applies in

neighborhoods of points (t,z(t)) € (0,a) x (—=b,b) if x(t) > 0).



The case v = § =1 is easier because for all t € (0,a] and all x,y € [—b,b] we have

Ft) = S| < g7 g o~ Y (2.15)

and therefore (1.1) has at most one solution on [0,a] by virtue of Corollary 2.2.

Notice that (2.15) implies that for a sufficiently small a € (0,a] we have

[f(t,z) — f(t,y)] < @ for allt € (0,a] and x,y € [—b,b], (2.16)

which implies uniqueness on [0, a] via Nagumo’s Uniqueness Theorem, see [1, Theorem 1.6.2]. However,
it is important to note that if a/(26(1 —1Ina)) > 1 then we cannot use Nagumo’s Theorem to ensure

uniqueness on the whole interval [0,a] at one stroke, as we did before with Corollary 2.2.
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