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Abstract

We present a new uniqueness result for first order systems of ordinary differential equations which

contains a generalization of Montel–Tonelli’s Uniqueness Theorem as a particular case. An example is

given to illustrate its applicability.
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1 Introduction

Let a, b ∈ (0,+∞), U = [t0, t0 +a]×{x ∈ Rn : ‖x−x0‖ ≤ b} and let f : U ⊂ Rn+1 −→ R be continuous

on U . This paper considers uniqueness of solutions for the initial value problem

x′ = f(t, x), x(t0) = x0. (1.1)

One of the more general uniqueness theorems is due to Kamke, see [1, Theorem 3.8.1] or [5, Theorem

6.1], who improved an earlier version by Perron.

Theorem 1.1 [Kamke’s Uniqueness Theorem] Assume that for all (t, x), (t, y) ∈ U , t 6= t0, we have

‖f(t, x)− f(t, y)‖ ≤ g(t− t0, ‖x− y‖), (1.2)
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for some continuous function g : (0, a] × [0, 2b] −→ [0,+∞) such that for every c ∈ (0, a), x(t) ≡ 0 is

the only solution of

x′(t) = g(t, x(t)) for all t ∈ (0, c), and lim
t→0+

x(t)

t
= 0. (1.3)

Then the initial value problem (1.1) has at most one solution in [t0, t0 + a].

While many uniqueness results follow from Kamke’s Theorem (e.g. Lipschitz’s, Osgood’s, and

many more, see [1, Corollary 1.15.6]), its conditions are in general difficult to check. In this paper

we introduce novel conditions on the function g(t, x) which imply that it satisfies the assumptions in

Kamke’s Theorem, thus getting new applicable criteria for the uniqueness of (1.1). In particular, we

are going to improve on Montel–Tonelli’s Uniqueness Theorem [1, Theorem 1.5.1].

Theorem 1.2 [Montel–Tonelli’s Uniqueness Theorem] Assume that for all (t, x), (t, y) ∈ U , t 6= t0,

we have

‖f(t, x)− f(t, y)‖ ≤ p(t− t0)ψ(‖x− y‖), (1.4)

where p : (0, a] −→ (0,+∞) is integrable, and ψ : [0, 2b] −→ [0,+∞) is continuous and∫
0+

dr

ψ(r)
= +∞. (1.5)

Then the initial value problem (1.1) has at most one solution in [t0, t0 + a].

2 New uniqueness criteria

The main result in this paper extends Montel–Tonelli’s Uniqueness Theorem by letting ψ depend also

on the t argument in (1.4).

Theorem 2.1 A continuous function g : (0, a]× [0, 2b] −→ [0,+∞) satisfies the conditions of Kamke’s

Uniqueness Theorem provided that g(t, x) > 0 if x > 0 and g(t, x) ≤ p(t)ψ(t, x), where p : (0, a] −→

(0,+∞) is measurable, ψ : (0, a]× [0, 2b]→ [0,+∞) is continuous and satisfies the following properties:

(i) ψ(t, 0) = 0 for all t ∈ (0, a];

(ii) ψ is nonincreasing with respect to its first variable; and

(iii) For every increasing and differentiable function u : (t1, t2] ⊂ (0, a] −→ (0, 2b) such that

lim
t→t+1

u(t)

t− t1
= 0, (2.6)

we have

lim sup
t→t+1

(∫ u(t2)

u(t)

dr

ψ(r, r)
−
∫ t2

t

p(s) ds

)
> 0. (2.7)

Proof. Reasoning by contradiction, we assume that x(t) is a nontrivial solution of (1.3). We can then

find t1, t2 ∈ [0, a] such that x(t1) = 0 and x(t) > 0 for all t ∈ (t1, t2].

The assumptions imply that x′(t) = g(t, x(t)) > 0 for all t ∈ (t1, t2], and therefore x is increasing.
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If t1 = 0, then x(t) satisfies (2.6) because it is a solution of (1.3); otherwise, we deduce from

L’Hôpital’s rule that

lim
t→t+1

x(t)

t− t1
= lim

t→t+1

x′(t) = lim
t→t+1

g(t, x(t)) = g(t1, 0) = 0.

Hence x(t) satisfies (2.6). In particular, we can assume without loss of generality that 0 < x(t) < t for

all t ∈ (t1, t2] and, therefore, x−1(r) > r for all r ∈ (0, x(t2)].

For every t ∈ (t1, t2) we have x′(t) ≤ p(t)ψ(t, x(t)), and then the change of variables formula yields∫ t2

t

p(s)ds ≥
∫ t2

t

x′(s)

ψ(s, x(s))
ds =

∫ x(t2)

x(t)

dr

ψ(x−1(r), r)
.

Since ψ is nonincreasing with respect to its first argument, and x−1(r) > r on (0, x(t2)], we deduce

that ∫ t2

t

p(s)ds ≥
∫ x(t2)

x(t)

dr

ψ(r, r)
for every t ∈ (t1, t2],

and we obtain a contradiction with (2.7) with u(t) = x(t). ut

Theorem 2.1 is a variant of [2, Theorem 3.1], less general but easier to prove and, we intend to

show, easier to apply. Taking p(t) = 1/t and ψ(t, x) = x in Theorem 2.1 we obtain as a particular

case the celebrated Nagumo’s uniqueness theorem, see [1, Theorem 1.6.2], that has attracted a renewed

interest in recent years, see [3, 4, 6, 7]. As an immediate consequence of Theorem 2.1 we also obtain

the following generalization of Montel–Tonelli’s Uniqueness Theorem.

Theorem 2.2 Problem (1.1) has at most one solution in [t0, t0 + a] provided that

‖f(t, x)− f(t, y)‖ ≤ p(t− t0)ψ(t− t0, ‖x− y‖) for all (t, x), (t, y) ∈ U , t 6= t0, (2.8)

where p : (0, a] −→ (0,+∞) is integrable, ψ : (0, a] × [0, 2b] −→ [0,+∞) is continuous, ψ satisfies

conditions (i) and (ii) in Theorem 2.1, and∫
0+

dr

ψ(r, r)
= +∞. (2.9)

Theorem 2.2 is a strict generalization of Montel–Tonelli’s Theorem as we emphasize in our next

corollary. Notice that it is based on conditions which replace Lipschitz constants by certain noninte-

grable functions of t, thus falling outside the scope of Montel–Tonelli’s Theorem, and providing us with

a criterion in the spirit of Nagumo’s.

Corollary 2.1 Problem (1.1) has at most one solution in [t0, t0 + a] provided that for some c > 0 we

have

‖f(t, x)− f(t, y)‖ ≤ c

(t− t0)h(t− t0)
‖x− y‖ for all (t, x), (t, y) ∈ U , t 6= t0, (2.10)

where h : (0, a]→ (0,+∞) is continuous, nonincreasing and satisfies∫
0+

1

t h2(t)
dt < +∞ and

∫
0+

1

t h(t)
dt = +∞.

Proof. Use Theorem 2.2 with p(t) =
c

th2(t)
and ψ(t, x) = h(t)x. ut
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The particular choice h(t) = 1− ln t for t ∈ (0, e) provides the following consequence.

Corollary 2.2 Problem (1.1) has at most one solution in [t0, t0 + a] for any a ∈ (0, e), provided that

for some c > 0 we have

‖f(t, x)− f(t, y)‖ ≤ c

(t− t0)(1− ln (t− t0))
‖x− y‖ for all (t, x), (t, y) ∈ U , t 6= t0. (2.11)

Other functions can be used in (2.11) instead of c/[(t− t0)(1− ln (t− t0))].

Corollary 2.3 Problem (1.1) has at most one solution in some [t0, t0 + â] ⊂ [t0, t0 + a] provided that

‖f(t, x)− f(t, y)‖ ≤ q(t− t0)‖x− y‖ for all (t, x), (t, y) ∈ U , t 6= t0, (2.12)

where q : (0, a] −→ (0,+∞) is continuous and

lim sup
t→0+

q(t) t (1− ln t) < +∞. (2.13)

Proof. Condition (2.13) implies the existence of constants c > 0 and â ∈ (0, a] such that

q(t) ≤ c

t (1− ln t)
for all t ∈ (0, â],

and therefore we can apply Theorem 2.2 on [t0, t0 + â]. ut

Finally, we show an example of the applicability of Corollaries 2.2 and 2.3.

Example 2.1 We are going to study the existence and uniqueness of solutions for

x′ =
√
α |x|+ β2 t2 (γ − δ ln t)2, t > 0, x(0) = 0, (2.14)

where α, β, γ and δ are positive constants. Notice that we have more than one solution if β = 0, e.g.

x(t) = 0 and x(t) = αt2/4.

First, we rewrite the previous problem in terms of (1.1) with t0 = 0: we fix a ∈ (0, 1) and b > 0,

and we define

f(t, x) =


√
α |x|+ β2 t2 (γ − δ ln t)2, if (t, x) ∈ (0, a]× [−b, b],

√
α |x|, if t = 0 and x ∈ [−b, b].

This function f is continuous on [0, a] × [−b, b]. Since f(t, x) is sublinear in x, we can assume that

b > 0 is sufficiently large so that (1.1) with t0 = 0 has at least one solution on the whole of [0, a], and

such a solution is necessarily positive on (0, a].

Now for the uniqueness. If t ∈ (0, a] and |x| < |y| ≤ b, then there is some z ∈ (|x|, |y|) such that

|f(t, x)− f(t, y)| = α

2
√
α z + β2 t2 (γ − δ ln t)2

||x| − |y|| ≤ α

2β t (γ − δ ln t)
|x− y|.

Therefore, we can use Corollary 2.3 with

q(t) =
α

2β t (γ − δ ln t)
,

to ensure that (1.1) has a unique solution on some [0, â] ⊂ [0, a] (in fact we have uniqueness on [0, a]:

the solution x(t) cannot bifurcate at any t ∈ (â, a] because the classical Lipschitz’s Theorem applies in

neighborhoods of points (t, x(t)) ∈ (0, a)× (−b, b) if x(t) > 0).
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The case γ = δ = 1 is easier because for all t ∈ (0, a] and all x, y ∈ [−b, b] we have

|f(t, x)− f(t, y)| ≤ α

2β t (1− ln t)
|x− y|, (2.15)

and therefore (1.1) has at most one solution on [0, a] by virtue of Corollary 2.2.

Notice that (2.15) implies that for a sufficiently small â ∈ (0, a] we have

|f(t, x)− f(t, y)| ≤ |x− y|
t

for all t ∈ (0, â] and x, y ∈ [−b, b], (2.16)

which implies uniqueness on [0, â] via Nagumo’s Uniqueness Theorem, see [1, Theorem 1.6.2]. However,

it is important to note that if α/(2β(1 − ln a)) > 1 then we cannot use Nagumo’s Theorem to ensure

uniqueness on the whole interval [0, a] at one stroke, as we did before with Corollary 2.2.
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