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Abstract

Keeping in mind the singular model for the periodic oscillations of the axis of a
satellite in the plane of the elliptic orbit around its center of mass, we give sufficient
conditions for the solvability of a class of singular Sturm-Liouville equations with peri-
odic boundary value conditions. To this end, under a suitable change of variables, we
present a new existence result for problems defined in the real half-line.
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1 Introduction

The boundary value problem (1 + e cos(t))x′′ − 2e sin(t)x′ + λ sin(x) = 4e sin(t), t ∈ [0, 2π],

x(0) = x(2π), x′(0) = x′(2π),
(1.1)

was introduced by Beletskii [4, 5, 6] as a model for the periodic oscillations of the axis of a
satellite in the plane of the elliptic orbit around its center of mass, where 0 ≤ e < 1 is the
eccentricity of the ellipse and |λ| ≤ 3 is a parameter related with the inertia of the satellite.

∗This work was partially supported by Ministerio de Educación y Ciencia, Spain, project MTM2007-
61724.
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From the mathematical point of view it is interesting to study for which values of the
parameters in the (e, λ)-plane the problem (1.1) has a solution. The solvability of (1.1) seems
to be studied for the first time in [17, 21, 22], but in 1985 Petryshyn and Yu made a major
step by establishing the existence of solution for (1.1) when

0 ≤ e π < 2 |λ| < 1− (8
√

2 + 3) e,

by using the degree theory for A-proper mappings.
In 1988 Hai proves for |e| < 1 and λ ∈ R the existence of a periodic solution as a minimum

in a certain ball of an associated functional [14] and the existence of an odd periodic solution
by using a monotone iterative scheme [15]. Also in 1988 Mawhin [18] proves the existence of
an odd periodic solution for |e| < 1 and λ ∈ R and the existence of a second solution for a
suitable restricted region of the parameters. Two years later Hai improves the multiplicity
result of Mawhin (see [16]) by proving that for all the values |e| < 1 and λ ∈ R there exist at
least two solutions of (1.1) not differing by a multiple of 2π. He obtained these two solutions
as different critical points of an associated functional. On the other hand, the stability of
the solutions of (1.1) has been studied in [19].

If we multiply the differential equation of problem (1.1) by (1 + e cos(t)) then it can be
rewritten as ((1 + e cos(t))2x′)′ = 4e(1 + e cos(t)) sin(t)− λ(1 + e cos(t)) sin(x), t ∈ [0, 2π],

x(0) = x(2π), x′(0) = x′(2π),
(1.2)

which is in the Sturm-Liouville form (p(t)x′)′ = f(t, x) with

p(t) = (1 + e cos(t))2,

and
f(t, x) = 4e(1 + e cos(t)) sin(t)− λ(1 + e cos(t)) sin(x).

Problem (1.1) is said to be regular when 0 ≤ e < 1 and singular for e = 1 (see [9, 10]).
This is due to the fact that in the last case the coefficient of the second order derivative
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vanishes at t = π. Moreover problem (1.2) becomes a singular Sturm-Liouville problem
whenever e = 1, since

∫ π
0

1
p(s)

ds = +∞ (see [12, 13]). This fact makes the case e = 1
interesting to deal with.

Now, keeping in mind problem (1.2) with e = 1, we are going to study the singular
Sturm-Liouville periodic boundary value problem (p(t)x′)′ = f(t, x), t ∈ [0, 2T ],

x(0) = x(2T ), x′(0) = x′(2T ).
(1.3)

where the nonlinearities p and f shall satisfy some suitable symmetry conditions, p(t) > 0

for all t ∈ [0, T ) and
∫ T

0
1
p(s)

ds = +∞. Our assumptions will allow us to search a solution of

problem (1.3) as the odd extension of a solution of the Dirichlet problem (p(t)x′)′ = f(t, x), t ∈ [0, T ],

x(0) = 0 = x(T ), lim
t→T−

p(t)x′(t) exists.
(1.4)

To deal with this Dirichlet problem we perform the standard Liouville transformation on
the independent variable

τ(t) =

∫ t

0

ds

p(s)
, (1.5)

which, due to the singularity of p(t), leads us to the half-line boundary value problemy′′ = g(τ, y), τ ∈ [0,+∞),

y(0) = 0 = y(+∞), y′(+∞) exists,
(1.6)

with g a suitable function related to f .
In section 2 we shall prove the existence of a solution of problem (1.6) under conditions

that, as far as we know, are not covered by previously ones considered in the literature for
boundary value problems in infinite intervals (see [1, 2, 3, 7, 8, 23] and references therein).
Finally, in section 3 we shall give an application of our main result to problem (1.2) in the
singular case e = 1.

2 Main result

This section is devoted to prove the existence of a nontrivial odd solution of problem (1.3).
To this end, we assume the following list of assumptions:

(p0) p : [0, 2T ] → R is continuous, p(T − t) = p(T + t) for all t ∈ [0, T ], p(t) > 0 for all

t ∈ [0, T ) and
∫ T

0
1
p(s)

ds = +∞.
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(p1) There is α > 1 such that

lim
n→∞

∫ n

n/α

(n− s) p(t(s)) ds = +∞,

with t : [0,∞) → [0, T ] given by t(s) := τ−1(s) for all s ∈ [0,∞), and τ defined on
(1.5).

(f0) f : [0, 2T ]× R→ R is continuous and satisfies

f(T − t,−x) = −f(T + t, x) for all t ∈ [0, T ] and all x ∈ R.

(f1) There exist t0 ∈ (0, T ), a constant r0 < 0 and a nondecreasing continuous curve
γ : [t0, T ]→ (−∞, 0], with r0 < γ(t) < 0 for all t ∈ (t0, T ) and γ(T ) = 0, such that:

(i) f(t, γ(t)) = 0 for all t ∈ [t0, T ],

(ii) f(t, 0) ≥ 0 for all t ∈ (0, t0]. Moreover f(t, x) > 0 for all t ∈ (t0, T ] and γ(t) <
x ≤ 0,

(iii) f(t, r0) ≤ 0 for all t ∈ (0, t0]. Moreover f(t, x) < 0 for all t ∈ (t0, T ] and
r0 ≤ x < γ(t).

t

x

γ(t)

t0

f(t, x) > 0

f(t, x) < 0

0 T

r0

Remark 2.1 It is clear that assumptions (p0) and (f0) imply, respectively, that p(T ) = 0
and f(T, 0) = 0.

On the other hand, if f is a continuously differentiable function in a neighborhood of
(T, 0), with f(T, 0) = 0 and ∂f

∂x
f(T, 0) 6= 0, then by the Implicit Function Theorem there

exist t1 ∈ (0, T ) and a continuously differentiable curve γ : (t1, T ] → R such that γ(T ) = 0,
f(t, γ(t)) = 0 for all t ∈ (t1, T ] and γ′(t) = −∂ f

∂ t
(t, γ(t))/∂ f

∂ x
(t, γ(t)).

4



In consequence, if moreover

∂ f

∂ t
(0, T )/

∂ f

∂ x
(0, T ) < 0,

then there exists t1 ≤ t2 < T such that γ is increasing on (t2, T ] and γ(t) < 0 for all (t2, T ).

Definition 2.1 By a solution of problem (1.3) we mean a function

x ∈ C([0, 2T ])
⋂

C1([0, T ) ∪ (T, 2T ])

with p(t)x′ ∈ C1([0, 2T ]) and that satisfies the differential equation and the boundary con-
ditions.

Now we present our main result.

Theorem 2.2 If assumptions (p0), (p1), (f0) and (f1) hold, then problem (1.3) has a non-
trivial odd solution (with respect to t = T ) which moreover satisfy r0 ≤ u(t) ≤ 0 for all
t ∈ (0, T ) and u(t) < γ(t) < 0 for all t ∈ (t̄, T ), for some t̄ ∈ (t0, T ).

Proof. Conditions (p0) and (f0) imply that the odd extension of a solution of problem
(1.4) is a solution of (1.3). By using the change in the independent variable τ given in (1.5),
which is, by (p0), an increasing homeomorphism from [0, T ) onto [0,∞), we obtain that x is
a solution of problem (1.4) if and only if y(τ(t)) := x(t) is a solution of problem (1.6) with

g(τ, y) = p(t(τ))f(t(τ), y),

and t(τ) given in (p1).
Now, by denoting τ0 ≡ τ(t0), we divide the proof into several steps.

Claim 1.- For each n ∈ N, n ≥ τ0, the Dirichlet problemy′′(τ) = g(τ, y(τ)), τ ∈ [0, n],

y(0) = 0 = y(n),
(2.1)

has a nontrivial solution yn ∈ [r0, 0]. Moreover yn(τ) < 0 for all τ ∈ (τ0, n).
From (p0) and (f1) it follows that

g(τ, r0) ≤ 0 ≤ g(τ, 0) for all τ ∈ (0,∞).

Hence it is clear that for each n ∈ N the functions

α(τ) = r0 and β(τ) = 0,

are a lower and an upper solution, respectively, for problem (2.1) with α ≤ β. Therefore it is
well-known (see [11, Theorem 4.2]) that problem (2.1) has a solution yn with r0 ≤ yn(τ) ≤ 0
for all τ ∈ [0, n].

Now, suppose that yn(τn) = 0 for some τn ∈ (τ0, n). Using condition (f1) and the
definitions of g and τ0, we have that y′′n(τn) > 0, which contradicts the fact that yn attains
a local maximum at τn.
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Claim 2.- There exists a constant M > 0 (independently of n ∈ N) such that

max{‖yn‖∞, ‖y′n‖∞, ‖y′′n‖∞} ≤M for all n ∈ N.

Since ‖yn‖∞ ≤ |r0| for all n ∈ N and in view that yn satisfies the differential equation y′′ =
g(τ, y) on [0, n], it follows that also ‖y′′n‖∞ ≤ M2 for some constant M2 > 0 independently
of n. These two facts imply easily that y′n must be also bounded independently of n.

Claim 3.- A subsequence of {yn}n∈N converges uniformly on compact sets to a function y ∈
C2[0,∞) which satisfies y(0) = 0, r0 ≤ y(τ) ≤ 0 and y′′(τ) = g(τ, y(τ)) for all τ ∈ [0,+∞).

Taking into account that yn, y
′
n and y′′n are uniformly bounded, from the Ascoli-Arzelà

theorem and by using a diagonal argument we obtain a subsequence of {yn}n∈N which con-
verges to a function y uniformly on each compact set. Thus y(0) = 0, r0 ≤ y(τ) ≤ 0 and y
satisfies the differential equation y′′(τ) = g(τ, y(τ)) for all τ ∈ [0,∞).

Claim 4.- lim
τ→∞

y′(τ) = 0 and there exists lim
τ→∞

y(τ). Moreover there is τ1 ≥ τ0 such that

y(τ) < γ̃(τ) := γ(t(τ)) < 0 for all τ > τ1.
Due to assumption (f1), if for all τ ≥ τ0 function y(τ) is always above the curve γ̃(τ)

then it would be convex on (τ0,∞), which is impossible. On the other hand, since γ̃(τ) is
nondecreasing for all τ ≥ τ0, we have that y(τ) must be below the curve γ̃(τ) after some
τ1 ≥ τ0. Therefore for τ ≥ τ1 the function is concave and bounded, which imply that
lim
τ→∞

y(τ) exists and lim
τ→∞

y′(τ) = 0.

Claim 5.- lim
τ→∞

y(τ) = 0.

To the contrary, suppose that lim
τ→∞

y(τ) = y0 ∈ [r0, 0). Now, for any n ∈ N fixed, let zn

be the unique solution of the Dirichlet problem

z′′(τ) = g(τ, y(τ)), τ ∈ [0, n], z(0) = z(n) = 0,

which is given by

zn(τ) =

∫ n

0

Gn(τ, s) g(s, y(s)) ds,

where Gn is the corresponding Green’s function which explicit expression is

Gn(τ, s) =


s
(
τ
n
− 1
)
, if 0 ≤ s ≤ τ ≤ n,

τ
(
s
n
− 1
)
, if 0 ≤ τ ≤ s ≤ n.

(2.2)

Clearly, wn := y − zn satisfies the following equalities:

w′′n(τ) = 0, τ ∈ [0, n], wn(0) = 0, wn(n) = y(n),
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or equivalently,

y(τ) =

∫ n

0

Gn(τ, s) g(s, y(s)) ds+
τ

n
y(n), for all τ ∈ [0, n].

In consequence, evaluating the previous expression at τ = n/α, we deduce that

y(n/α) =

∫ n

0

Gn(n/α, s) g(s, y(s)) ds+
1

α
y(n),

and passing to the limit we arrive at

lim
n→∞

∫ n

0

Gn(n/α, s) g(s, y(s)) ds =
α− 1

α
y0 ∈ [r0, 0).

On the other hand, by (f1) there exist τ̄ ≥ τ1 and c < 0 such that

f(t(τ), y(τ)) < c for all τ > τ̄ .

Moreover, denoting by

β =
1− α
α

∫ τ̄

0

s g(s, y(s)) ds,

and using (2.2), we deduce that the following inequalities hold for all n ≥ α τ̄∫ n

0

Gn(n/α, s) g(s, y(s)) ds =

∫ τ̄

0

Gn(n/α, s) g(s, y(s)) ds

+

∫ n

τ̄

Gn(n/α, s) g(s, y(s)) ds

= β +

∫ n

τ̄

Gn(n/α, s) p(t(s))f(t(s), y(s)) ds

≥ β + c

∫ n

τ̄

Gn(n/α, s) p(t(s)) ds

≥ β + c

∫ n

n/α

Gn(n/α, s) p(t(s)) ds

= β +
c

α

∫ n

n/α

(s− n) p(t(s)) ds.

Now, from this inequality and condition (p1), we deduce that

lim
n→∞

∫ n

0

Gn(n/α, s) g(s, y(s)) ds = +∞,

and we attain a contradiction.
So, lim

τ→∞
y(τ) = 0 and the proof is finished.
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If, instead of condition (p1) we assume

(p2) Suppose that there is t1 ∈ (0, T ) for which function p is nonincreasing in (t1, T ) and
there is α > 1 such that

lim
n→∞

n2 p(t(n/α)) = +∞, (2.3)

we deduce, as a straightforward consequence of theorem 2.2, the following result.

Corollary 2.3 If assumptions (p0), (p2), (f0) and (f1) hold then problem (1.3) has a non-
trivial odd solution (with respect to t = T ) which moreover satisfy r0 ≤ u(t) ≤ 0 for all
t ∈ (0, π) and u(t) < γ(t) < 0 for all t ∈ (t̄, T ), for some t̄ ∈ (t0, T ).

Proof. It is clear that we only need to verify that condition (p1) is fulfilled. To this end,
notice that

∫ n

n/α

(n− s) p(t(s)) ds =

∫ n

n/α

(∫ n

s

p(t(s)) dr

)
ds

=

∫ n

n/α

(∫ r

n/α

p(t(s)) ds

)
dr

=

∫ n

n/α

(∫ t(r)

t(n/α)

dτ

)
dr

=

∫ n

n/α

(t(r)− t(n/α)) dr.

Now, the mean value theorem imply that there is τn ∈ [n/α, r] such that

t(r)− t(n/α) = t′(τn) (r − n/α) = p(t(τn)) (r − n/α).

Thus, for n large enough we know that t(n/α) ≥ t1 and from (p2) it follows

t(r)− t(n/α) ≥ p(t(n/α)) (r − n/α),

and thus∫ n

n/α

(n− s) p(t(s)) ds ≥ p(t(n/α))

∫ n

n/α

(r − n/α) dr =
(α− 1)2

2α2
p(t(n/α))n2.

So, condition (p2) implies that condition (p1) holds and the results of Theorem 2.2 are valid.
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Example 2.4 Let us consider the following problem (p(t)x′)′ − q(t)x = A sin
(
π t
T

)
, t ∈ [0, 2T ],

x(0) = x(2T ), x′(0) = x′(2T ).

If we assume that p satisfies (p0) and (p1), A > 0 and moreover

(q0) q(T − t) = q(T + t) for all t ∈ [0, T ],

(q1) q(t) ≥ k > 0 for all t ∈ [0, 2T ],

(q2) q is nondecreasing on some interval [t2, T ] with t2 ∈ (0, T ),

then a simple computation shows that (f0) and (f1) hold, with t0 = max{T/2, t2}, r0 =

−A/k < 0 and γ(t) =
−A sin

(
π t
T

)
q(t)

. Thus the existence of a nontrivial odd solution follows

from Theorem 2.2.

Remark 2.5 Notice that if we are looking for solutions of the Dirichlet problem, instead of
periodic ones, then the symmetric conditions (p0) and (f0) are no longer needed.

For instance, if p : [0, T ]→ R is continuous, p(t) > 0 for all t ∈ [0, T ),
∫ T

0
1
p(s)

ds = +∞
and conditions (p1), (q1) and (q2) are fulfilled, then problem (p(t)x′)′ − q(t)x = A sin2

(
j π t
T

)
, t ∈ [0, T ],

x(0) = x(T ) = 0,

has at least a solution −A/k ≤ x(t) ≤ 0 on (0, T ), for all j ∈ N and A > 0. Moreover

x(t) < −
A sin2

(
j π t
T

)
q(t)

< 0,

for all t ≥ t̄ ≥ max {t2, (2 j − 1)T/(2 j)}.

3 An application to problem (1.2)

In this section we will apply the main result given in previous section to problem (1.2) in
the singular case e = 1. We recall that by a solution of problem (1.2) we mean a function
x ∈ C([0, 2 π])

⋂
C1([0, π) ∪ (π, 2 π]) with (1 + cos(t))2 x′ ∈ C1([0, 2π]) that satisfies the

differential equation and the boundary conditions. The existence result is the following.

Theorem 3.1 If e = 1 and λ ≤ −4 then problem (1.2) has a nontrivial odd solution (with
respect to t = π) which moreover satisfies −π

2
≤ u(t) ≤ 0 for all t ∈ [0, 2π] and u(t) <

arcsin (4 sin t/λ) < 0 for some t̄ ∈ (π, 2π).
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Proof. As we have already noticed, problem (1.2) with e = 1, is a particular case of
problem (1.3) with T = π, p(t) = (1 + cos(t))2 and

f(t, x) = 4(1 + cos(t)) sin(t)− λ(1 + cos(t)) sin(x).

In consequence, conditions (p0) and (f0) are clearly satisfied. On the other hand, it is not dif-
ficult to verify that, if λ ≤ −4, condition (f1) holds for r0 = −π/2, γ(t) = arcsin ((4 sin t)/λ)
and t0 = π/2. In the sequel, we shall verify condition (p2) to concluding the result as a con-
sequence of Corollary 2.3.

It is clear that function p is nonincreasing on (0, π). Moreover, some computations with
Mathematica show us that for all t ∈ [0, π)

τ(t) =

∫ t

0

1

(1 + cos(s))2
ds =

1

12

(
3 sin

(
t

2

)
+ sin

(
3t

2

))(
sec

(
t

2

))3

,

and so its inverse is given for all τ ∈ [0,∞) by

t(τ) = 2 arcsec

(√
3

√
18τ 2 + 6

√
9τ 4 + τ 2 + 1 +

1
3
√

18τ 2 + 6
√

9τ 4 + τ 2 + 1
− 1

)
.

Then for all s ∈ [0,∞) we have

p(t(s)) =
4(

3
√

18s2 + 6
√

9s4 + s2 + 1 + 1
3
√

18s2+6
√

9s4+s2+1
− 1

)2 .

Tacking α = 2, we obtain that

n2 p(t(n/2)) =
4n2(

3

√
9n2

2
+ 3

2

√
n2 (9n2 + 4) + 1 + 1

3
√

9n2

2
+ 3

2

√
n2(9n2+4)+1

− 1

)2 ,

and therefore condition (2.3) is satisfied.
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