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Under general conditions, an explicit estimate λ0 is given such that the problem

possesses a solution for any |λ| < λ0.
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1 Introduction

In this paper we shall consider the differential equation

(φ(u′))′ = λf(t, u, u′) for a.a. t ∈ I := [0, 1], (1.1)
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1



with Dirichlet

u(0) = 0 = u(1) (1.2)

or mixed boundary conditions

u(0) = 0 = u′(1). (1.3)

We suppose that φ : (−a, a) → (−b, b) is an increasing homeomorphism with

φ(0) = 0 and 0 < a, b ≤ ∞, λ ∈ R is a parameter and f : I × R× (−a, a) → R

is a L1-Carathéodory function, that is,

(i) for all (u, v) ∈ R× (−a, a), f(·, u, v) is measurable;

(ii) for a.a. t ∈ I, f(t, ·, ·) is continuous;

(iii) for each compact set K ⊂ R × (−a, a) there exists hK(t) ∈ L1(0, 1) such

that

|f(t, u, v)| ≤ hK(t) for a.a. t ∈ I and all (u, v) ∈ K.

A solution of (1.1)-(1.2) or (1.1)-(1.3) is a function u ∈ C1(I) such that

φ ◦ u′ ∈ W 1,1(0, 1) and u fulfills (1.1) almost everywhere and the corresponding

boundary condition.

The study of the φ-laplacian equation is a classical topic that has attracted

the attention of many researchers because of its interest in applications. Usually,

a φ-laplacian operator is said singular when the domain of φ is finite (that is,

a < +∞), on the contrary the operator is said regular. On the other hand we

say that φ is bounded if its range is finite (that is, b < +∞) and unbounded in

other case. There are three paradigmatic models in this context:

• a = b = +∞ (Regular unbounded): the p-laplacian operator

φ1(x) = |x|p−2x, with p > 1.

• a < +∞, b = +∞ (Singular unbounded): the relativistic operator

φ2(x) =
x√

1− x2
.
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• a = +∞, b < +∞ (Regular bounded): the one-dimensional mean curva-

ture operator

φ3(x) =
x√

1 + x2
.

Among them, the p-laplacian operator has deserved a lot of attention and the

number of related references is huge (see for instance ([5, 6, 7, 8, 9, 10] and

references therein). For the relativistic operator, it has been proved in the recent

paper [2] that the Dirichlet problem is always solvable. This is a striking result

closely related with the “a priori” bound of the derivatives of the solutions. For

the curvature operator, this is no longer true, but other results about existence

and multiplicity of solutions can be obtained by variational [4] or topological

approaches (see the thesis [3] for a more complete bibliography).

The purpose of this note is to contribute to the literature by proving the

existence of solution for small λ, giving an explicit estimate. This complements

in part the results in [4]. Moreover we extend some previous results of Bereanu

and Mawhin [1, 2]. The proof is elementary and relies on Schauder’s fixed

point theorem after a suitable reduction of the problem to a first order integro-

differential equation.

For convenience, for each 0 < r < b let Mr be defined as

Mr := ‖hKr
‖1, (1.4)

where Kr = [φ−1(−r), φ−1(r)]× [φ−1(−r), φ−1(r)].

2 The Dirichlet boundary value problem

Let us consider the boundary value problem

(φ(u′))′ = λf(t, u, u′) for a.e. t ∈ I, u(0) = 0 = u(1), (2.5)

under the conditions given in the introduction.

Let us define the space

H =
{

y ∈ C(I) : ‖y‖∞ <
b

2

}
.
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Of course, b
2 must be understood as +∞ when b = +∞. The following result is

a slight modification of [2, Lemma 1], but we include the proof for the shake of

completeness.

Lemma 2.1 For any y ∈ H there exists a unique constant α := Qφ[y] such that∫ 1

0

φ−1(y(s)− α)ds = 0. (2.6)

Besides, |Qφ[y]| ≤ ‖y‖∞ and the function Qφ : H → (− b
2 , b

2 ) is continuous.

Proof. By the properties of φ, it is clear that∫ T

0

φ−1(y(s)− ‖y‖∞)ds ≤ 0 ≤
∫ T

0

φ−1(y(s) + ‖y‖∞)ds.

By Bolzano’s theorem, there exists α verifying (2.6) with |α| ≤ ‖y‖∞. Moreover,

this constant is unique by the increasing character of φ−1. To check the con-

tinuity assume that {yn} ⊂ H is a sequence converging to some y ∈ H. Then

Qφ[yn] → c (taking a subsequence if it is necessary) and by the dominated

convergence theorem we have∫ T

0

φ−1(y(s)− c)ds = 0.

Therefore c = Qφ[y] and the proof is complete. ut

By means of a suitable change of variables we relate the problem (2.5) with

the non-local first order equation

y′(t) = λf

(
t,

∫ t

0

φ−1(y(s)−Qφ[y])ds, φ−1(y(t)−Qφ[y])
)

a.a. t ∈ I. (2.7)

Lemma 2.2 If y is a solution of problem (2.7) with ‖y‖∞ < b
2 then

u(t) =
∫ t

0

φ−1(y(s)−Qφ[y])ds,

is a solution of problem (2.5).

The proof of the lemma is direct and thus we omit it. Now, we are in a

position to prove the main result of this section: the solvability of problem (2.5)

for small λ.
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Theorem 2.1 For each 0 < r < b/2, let Mr be defined by equation (1.4). If

|λ| < λ0 := sup
0<r<b/2

r

M2r
,

then problem (2.5) has a solution.

Proof. Let 0 < r1 < b/2 be such that |λ| ≤ r1
M2r1

and consider the closed ball

Br1 = {y ∈ C(I) : ‖y‖∞ ≤ r1}.

For each y ∈ Br1 define the operator

Ty(t) := λ

∫ t

0

f

(
s,

∫ s

0

φ−1(y(τ) + Qφ[y])dτ, φ−1(y(s) + Qφ[y])
)

ds.

It is easy to show that T is completely continuous. Moreover by our assumptions

and the choice of r1 we have

‖Ty‖∞ ≤ |λ|M2r1 ≤ r1,

which implies that T (Br1) ⊂ Br1 . Thus Schauder’s fixed point theorem yields a

fixed point for T which is a solution of equation (2.7) and therefore by Lemma

2.2 it is also a solution for problem (2.5). ut

Remark 2.1 Of course, an analogous result holds for a BVP defined on an

arbitrary interval [t1, t2], we have chosen the interval [0, 1] just for simplicity.

Remark 2.2 In [4] the authors obtain the existence of a positive solution to

problem

−φ(u′)′ = λf(t, u), u(0)=0=u(1),

for small and/or large λ > 0, where φ(u) = u√
1+u2 is the mean curvature oper-

ator. The main advantage of our approach is the simplicity on the assumptions

and the fact that the constant λ0 is established explicitly. Regrettably our method

doesn’t avoid in general the existence of the trivial solution.

Now we are going to apply Theorem 2.1 to study the solvability of the

Dirichlet problem

(φ(u′))′ = f(t, u, u′) for a.e. t ∈ I, u(0) = 0 = u(1), (2.8)
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extending some previous results in [1, 2]. We point out that problem (2.8)

presents interesting different features depending on the bounded or unbounded

behavior of φ.

2.1 Unbounded φ-laplacian (b = +∞)

A consequence of Theorem 2.1 is that whenever φ is unbounded and f is L1-

bounded then (2.8) is always solvable.

Corollary 2.1 Assume that φ is unbounded (that is, b = +∞) and there exists

h ∈ L1(0, 1) such that

|f(t, u, v)| ≤ h(t) for a.a. t ∈ I and all u, v ∈ (−a, a). (2.9)

Then the Dirichlet problem (2.8) has at least one solution.

Proof. By condition (2.9) it is clear that

Mr = ‖h‖1 for each r > 0.

Therefore

λ0 = sup
0<r<+∞

r

M2r
= +∞,

and then Theorem 2.1 ensures us that problem (2.5) has a solution for each

λ ∈ R, and in particular for λ = 1. ut

Remark 2.3 Corollary 2.1 applies in particular if φ is also singular (a < +∞)

and f continuous on I × R2. In this way Corollary 2.1 improves [2, Corollary

1].

2.2 Bounded φ-laplacian (b < +∞)

In the case of bounded φ-laplacian the “universal” solvability of (2.8) is not

longer true even for a constant nonlinearity f(t, u, v) ≡ M as we show in the

following result.
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Proposition 2.1 Assume that φ is bounded (that is, b < +∞), let M ∈ R and

consider the Dirichlet problem

(φ(u′))′ = M for a.a. t ∈ I, u(0) = 0 = u(1). (2.10)

Then the following claims hold:

(i) If |M | ≥ 2b then the problem (2.10) has no solution.

(ii) If |M | < 2b and moreover Φ is odd then the problem (2.10) has a solution.

Proof. (i) If u is a solution of (2.10) then there exists some τ ∈ (0, 1) such

that φ(u′(τ)) = 0 and therefore we have

u(t) =
∫ t

0

φ−1(M(s− τ))ds for all t ∈ I. (2.11)

Suppose that |M | ≥ 2b, then

max
s∈[0,1]

|M(s− τ)| ≥ b.

In this case u given by (2.11) would not be well defined since the domain of φ−1

is the interval (−b, b) and thus a solution of (2.10) can not exist.

(ii) If |M | < 2b the function u given by equation (2.11) is well defined for

τ = 1/2, satisfies (φ(u′))′ = M on [0, 1] and u(0) = 0. Moreover, since φ is odd

we also obtain that u(1) = 0 and thus u is a solution of (2.10). ut

Both claims of Proposition 2.1 apply to the one-dimensional mean curvature

operator Φ(s) = s√
1+s2 since it is a bounded and odd homeomorphism.

Corollary 2.2 The Dirichlet boundary value problem(
u′√

1 + u′(x)2

)′
= M for a.a. t ∈ I, u(0) = 0 = u(1),

has a solution if and only if |M | < 2.

As consequence of Theorem 2.1 we obtain the following sufficient condition

for the solvability of the Dirichlet problem which extends a previous result in

[1].
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Corollary 2.3 Assume that φ is bounded (that is, b < +∞) and there exists

h ∈ L1(0, 1) such that

|f(t, u, v)| ≤ h(t) for a.a. t ∈ I and all u, v ∈ (−a, a),

with

‖h‖1 <
b

2
.

Then the Dirichlet problem (2.8) has at least one solution.

Proof. Now, for each 0 < r < b we have that Mr = ‖h‖1 < b
2 . Therefore

λ0 = sup
0<r< b

2

r

M2r
> 1,

and thus Theorem 2.1 implies the existence of a solution for problem (2.5) with

λ = 1. ut

3 The mixed boundary value problem

If compared with the Dirichlet problem, the mixed boundary value problem

(φ(u′))′ = λf(t, u, u′) for a.a. t ∈ I, u(0) = 0 = u′(1), (3.12)

is less studied in the related literature. In this case, by means of the change of

variables y = φ(u′) we have that a solution u : I → R of (3.12) is equivalent to

a solution y : I → (−b, b) of the following non-local first order terminal value

problem

y′(t) = λf

(
t,

∫ t

0

φ−1(y(s))ds, φ−1(y(t))
)

for a.a. t ∈ I, y(1) = 0. (3.13)

By using the same idea as in Theorem 2.1, we can prove the following result.

Theorem 3.1 If

|λ| < λ̃0 := sup
0<r<b

r

Mr
,

then problem (3.12) has a solution.
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Proof. Let 0 < r1 < b be such that |λ| ≤ r1
Mr1

, define

Br1 = {y ∈ C(I) : ‖y‖∞ ≤ r1}

and apply Schauder’s fixed point theorem to the completely continuous operator

T : Br1 → Br1 defined as

Ty(t) := λ

∫ 1

t

f

(
s,

∫ s

0

φ−1(y(r))dr, φ−1(y(s))
)

ds.

ut

Remark 3.1 The preceding theorem is sharp in the following sense: when

φ(x) = x√
1+x2 and f(t, u, v) ≡ M then it is easy to show that problem (3.12)

has a solution if and only if |λ| < λ̃0 = sup
0<r<1

r

Mr
=

1
M

.

Again, the extremes where the BVP is defined can be chosen arbitrarily. On

the other hand, let us observe that λ̃0 ≥ λ0.
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