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LYAPUNOV STABILITY OF PERIODIC SOLUTIONS OF BRILLOUIN

TYPE EQUATIONS

FENG WANG1,2, JOSÉ ÁNGEL CID∗3, SHENGJUN LI4, MIROS LAWA ZIMA5

Abstract. Motivated by the Brillouin equation we deal with the existence and Lya-
punov stability of periodic solutions for a more general kind of equations. Our approach

is based on the third order approximation in combination with some location information

obtained by the averaging method. We will show that our main results apply to some
singular models not previously covered in the related literature.

1. Introduction

During the past half century, the following classical Brillouin equation

(1) ẍ+ ε(1 + cos t)x =
1

x
, ε > 0

has been widely investigated because, as shown in [1], it governs a focusing system for an
electron beam immersed in a periodic magnetic field. For the periodic solution of equation
(1), a numerical conjecture is that (1) admits positive periodic solutions for 0 < ε < 1

4 , see
[16, Conjecture 6.1]. It seems that the first reference in this line is [7], where the existence of
periodic solutions is proved when ε ≤ 1

16 by using an analysis of the phase plane. Afterwards,
this result has been subsequently improved up to ε ≤ 0.2483 . . ., see [2]. However, until now,
the conjecture has not been proved by a strictly analytical method, [19], and in fact some
doubts have been expressed about its validity, [2].

Compared with the existence results, only a few works focus on the stability of periodic
solutions for (1). As far as we know, the first result along this line was proved in [14], in
which the author shows that the solution given by Ding [7] is stable in the linear sense,
although the Lyapunov stability of the solution is not assured since it may depend on the
nonlinear terms. In [3, 15, 17], some stability results have been obtained for the related
equation

(2) ẍ+ ε(1 + δ cos t)x =
1

x
, ε > 0, δ > 0.

Unfortunately, those stability results cannot be applied to the model (1) and, to the best
of our knowledge, nothing has been published concerning the Lyaupunov stability for the
Brillouin equation (1).

Notice that equation (2) is a particular case of equation

(3) ẍ = r(t)xα − εs(t)xβ ,
where α, β ∈ R, and r, s are continuous T -periodic functions. The existence and stability of
solutions for equation (3) have been studied, for α < β < 0 in [5] and for 0 < α < β < 1 in
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[18], by application of the averaging method and the third-order approximation. However,
a careful analysis of their proofs reveals that actually they remain valid for a wider set of
exponents. In this way, we will be able not only to unify the results in both papers but
also to obtain new applications to equations like (2), that are covered by none of them since
one of the exponents is negative while the other being positive. We also notice that all the
stable periodic solutions obtained in this paper are of twist type and so the complicated
dynamics prescribed by the KAM theory appears around them, see [5].

Finally, throughout this paper, for a given T -periodic function e, we denote

em = inf
t∈[0,T ]

e(t), eM = sup
t∈[0,T ]

e(t) and ē =
1

T

∫ T

0

e(t)dt.

2. Main results

2.1. Existence of periodic solutions for equation (3). The following result unifies and
extends [5, Lemma 3.1] and [18, Theorem 3.3]. The proof is an application of the averaging
method, see [8], and it is included for the sake of completeness.

Theorem 2.1. Assume that r and s are T -periodic continuous functions with r̄ · s̄ > 0. Let
α, β ∈ R be such that

(4) (β − α)(1− α) > 0.

Then equation (3) has a T -periodic solution x(t, ε) if ε > 0 is small enough. Moreover, the
following asymptotic behavior holds

(5) lim
ε→0+

εγx(t, ε) = ωγ , uniformly in t,

where ω = r̄
s̄ and γ = 1

β−α .

Proof. Firstly, we rewrite equation (3) as the system

(6)
ẋ = y,
ẏ = r(t)xα − εs(t)xβ ,

and by rescaling the variables x = uε−γ , y = vε−
γ(α+1)

2 and ν = ε
γ(1−α)

2 , system (6) takes
the form

(7)
u̇ = νv,
v̇ = ν

(
r(t)uα − s(t)uβ

)
.

Notice that condition (4) implies that γ(1−α)
2 > 0 and then ν → 0+ if and only if ε → 0+.

The averaged system of (7) is

(8)
ξ̇ = νη,
η̇ = ν

(
rξα − sξβ

)
.

Then (8) has a unique non-trivial constant solution (ξ0, η0) := (ωγ , 0), and the Jacobian
matrix evaluated at (ξ0, η0) is

(9) M =

(
0 ν

ν
(
αrξα−1

0 − βsξβ−1
0

)
0

)
=

 0 ν

ν(α− β)r

(
r

s

)γ(α−1)

0

 .

Then (ξ0, η0) is nondegenerate since (4) implies in particular that α 6= β. So, by [8, Section
V.3], the equilibrium (ξ0, η0) is continuable for small ν, that is, there exists ν0 such that
system (7) has a T -periodic solution (u(t, ν), v(t, ν)) for 0 < ν < ν0, tending uniformly
to (ξ0, η0) as ν → 0+. Going back through the rescaling, we conclude that equation (3)
has a T -periodic solution x(t, ε) for ε > 0 small enough and the asymptotic behavior (5)
occurs. �
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2.2. Instability of periodic solutions for equation (3). The following result extends
[11, Theorem 3.1] in some situations.

Theorem 2.2. Under the assumptions of Theorem 2.1, if moreover

(10) (β − α)r < 0,

then there exists an unstable T -periodic solution x(t, ε) of (3) provided that ε > 0 is small
enough.

Proof. From the proof of Theorem 2.1 we know that the Jacobian matrix of the averaged
system (8) at the equilibrium (ξ0, η0) is given by (9) and that (ξ0, η0) is nondegenerate. Now,
from condition (10) we have that M has one positive eigenvalue and then by [8, Section V.3]
equation (3) has an unstable periodic solution when ε is small enough. �

2.3. Lyapunov stability of periodic solutions for equation (3). The following result
unifies and extends [5, Theorem 3.2] and [18, Theorem 3.9]. Its proof is based on the method
of the third approximation and the twist coefficient, see [12, 20], and it is similar to that
of both results. So, we are going to focus mainly on the differences and skip the repeated
parts.

Theorem 2.3. Assume that r, s are T -periodic continuous functions with r · s > 0. Let
α, β ∈ R be such that (4) and the following conditions are satisfied

(11) 2α2 + 2β2 + 7αβ − α− β − 1 6= 0,

(12) (ωβs− αr)m > 0.

Then the T -periodic solution x(t, ε) of (3) obtained in Theorem 2.1 is stable if ε > 0 is small
enough.

Proof. It is enough to show that for small enough ε > 0 the first twist coefficient µ given
by formula (A.12) in [16] is different from zero. The third-order approximation of (3) is

ẍ+ a(t)x+ b(t)x2 + c(t)x3 + o(x3) = 0,

where

(13) a(t) = εβs(t)x(t)β−1 − αr(t)x(t)α−1,

(14) b(t) =
1

2

[
εβ(β − 1)s(t)x(t)β−2 − α(α− 1)r(t)x(t)α−2

]
,

and

(15) c(t) =
1

6

[
εβ(β − 1)(β − 2)s(t)x(t)β−3 − α(α− 1)(α− 2)r(t)x(t)α−3

]
.

By using the asymptotic behavior (5) and the expressions (13)-(15), we have the following
limits uniformly in t

(16) lim
ε→0+

εγ(α−1)a(t) = βs(t)ωγ(β−1) − αr(t)ωγ(α−1),

lim
ε→0+

εγ(α−2)b(t) =
1

2

[
β(β − 1)s(t)ωγ(β−2) − α(α− 1)r(t)ωγ(α−2)

]
,

and

lim
ε→0+

εγ(α−3)c(t) =
1

6

[
β(β − 1)(β − 2)s(t)ωγ(β−3) − α(α− 1)(α− 2)r(t)ωγ(α−3)

]
.

From (16) and condition (12) it follows that for all t ∈ [0, T ]

lim
ε→0+

εγ(α−1)a(t) = βs(t)ωγ(β−1) − αr(t)ωγ(α−1)

= ωγ(α−1)(ωβs(t)− αr(t)) > 0,

which implies that a(t) > 0 if ε > 0 is small enough and then also ā > 0 for small enough
ε > 0.
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Now, an application of [6, Corollary 4.1] gives

lim
ε→0+

ε
γ(α−1)

2 θ = T
√

(β − α) r̄ ωγ(α−1),

and

lim
ε→0+

R(t)

ε
γ(α−1)

4

=
1

4
√

(β − α) r̄ ωγ(α−1)
,

for ε > 0 small enough. Here θ = Tρ, where ρ is the rotation number of the associated
Hill’s equation ü+a(t)u = 0, and R(t) appears in [16, Definition A.5]. Then, it follows from
[10, Lemma 3.6] that the associated Hill’s equation is elliptic and 4-elementary if ε > 0 is
small enough. Now, following the same reasoning as in the proof of [18, Theorem 3.9] and
avoiding the tedious computations we get

lim
ε→0+

µ

ε2γ
=

T

48ω2γ
(2α2 + 2β2 + 7αβ − α− β − 1).

Condition (11) means that lim
ε→0+

µ

ε2γ
6= 0 and therefore the twist coefficient µ is non-zero

when ε is small enough. �

Remark 1. Notice that in [5, 18] condition (12) appears with the inequality “≥” instead of
“>”. However, a thorough examination of the proof reveals that in fact the strict inequality
is required.

On the other hand, condition (12) is equivalent to ωβs(t) − αr(t) > 0, for all t ∈ [0, T ]
and then dividing by T and integrating both sides of the inequality between 0 and T we get

(17) (β − α)r > 0.

Observe that (17) is opposite to (10) and a necessary condition to apply Theorem 2.3.

Corollary 1. Suppose that r and s are T -periodic continuous functions with r · s > 0 and
α, β ∈ R satisfy (11), (12) and moreover

(18) either α < β < 1 or 1 < β < α.

Then the equation

(19) ẍ = λr(t)xα − s(t)xβ

has a stable T -periodic solution x(t, λ) if λ is large enough.

Proof. By using the change of variables x = λ
1

1−α y, equation (19) is transformed into

ÿ = r(t)yα − εs(t)yβ , where ε = λ
β−1
1−α . From (18) it follows that ε → 0+ if and only if

λ→ +∞. Note also that (18) implies (4) and then the result follows from Theorem 2.3. �

3. Applications to some singular models

3.1. The Brillouin equation. In this section, we will use our main mathematical results
to make more complete the study of the singular Brillouin type differential equation

(20) ẍ =
r(t)

xσ
− εs(t)x.

Theorem 3.1. Assume that r, s are T -periodic continuous functions with r > 0 and s > 0.
Let σ > 0 be such that the following conditions are satisfied:

(21) σ 6= 3,

(22) (r · s+ σ · s · r)m > 0.

Then, equation (20) has a T -periodic solution x(t, ε) stable in the Lyapunov sense if ε is
small enough.

Proof. Since equation (20) is a particular form of (3) with α = −σ < 0 and β = 1 the result
follows from Theorem 2.3. �
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Remark 2. The situation excluded by (21), that is σ = 3, corresponds to the Ermakov-
Pinney equation [13] to which our results cannot be applied.

Corollary 2. For any δ > 0, the equation (2) has a 2π-periodic solution if ε is small enough.
Furthermore, this 2π-periodic solution is stable in the sense of Lyapunov for ε small enough
and 0 < δ < 2.

Proof. The existence part is consequence of Theorem 2.1. The stability part follows from
Theorem 3.1 with r(t) ≡ 1, s(t) = 1 + δ cos t and σ = 1 (in this case, r = s = 1 and then
(r · s+ σ · s · r)m = 2− δ). �

As a relevant application of Corollary 2, we consider the case δ = 1.

Corollary 3. The classical Brillouin equation (1) has at least one Lyapunov stable 2π-
periodic solution when ε is small enough.

3.2. A Rayleigh-Plesset equation. The equation

(23) ẍ =
λ

x
6k−1

5

− s(t)x1/5

governs the radial oscillations of a bubble in a liquid under the action of a radial pressure
field if we neglect surface tension and viscosity but we consider the effect of the internal gas
pressure (see [16, Chapter 9]). It has been proved in [9] that (23) has a periodic positive
solution if k ≥ 1 and s̄ > 0. As consequence of our main results we can add stability
information, thus giving a partial answer to the Open Problem 9.1 in [16].

Theorem 3.2. Assume that s is a T -periodic continuous function with s > 0 and moreover

k > 0, k 6= 3+
√

57
12 ≈ 0.879153 and sm + (6k− 1)s > 0. Then equation (23) has a T -periodic

solution x(t, λ) stable in the Lyapunov sense if λ > 0 is large enough.

Proof. Note that equation (23) is a particular form of (19) with r(t) = 1, α = 1−6k
5 and

β = 1/5. Then conditions (11), (12) and (18) are satisfied and the result follows from
Corollary 1. �

3.3. A Gylden-Meshcherskii type equation. When β = −2 the equation

(24) ẍ =
µ2

x3
− s(t)xβ

rules the radial component of a solution with angular moment µ of the Gylden-Meshcherskii
problem, that is, a two-body problem with a periodically variable product of masses s (see
[16, Chapter 4]). Our following result extends [4, Theorem 3.3] to a slightly wider set for
the parameter β.

Theorem 3.3. Assume that s is a T -periodic continuous function with s > 0, −3 < β < 1
and

(25) (βs)m + 3s > 0.

Then equation (24) has a T -periodic solution x(t, µ) stable in the Lyapunov sense if µ > 0
is large enough.

Proof. Note that equation (24) is a particular form of (19) with r(t) = 1 and α = −3. Then
conditions (11), (12) and (18) are satisfied and the result follows from Corollary 1. �

Remark 3. In the original Gylden-Meshcherskii problem, that is when β = −2, condition
(25) reads as

(26)
sM
s̄

<
3

2
.

We point out that condition (26) is not explicitly asked in [4, Theorem 3.3] but a close
inspection of its proof shows that in fact it should be assumed.



6 F. WANG, J.A. CID, S. LI, M. ZIMA

Acknowledgments

We warmly thank the anonymous referees for their careful reading of the manuscript and
pointing out some inaccuracies in a former version of it.

References

[1] V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric mag-

netically focused beam valves, J. Br. Inst. Radio Eng. 18 (1958), 696-705.
[2] R. Castelli and M. Garrione, Some unexpected results on the Brillouin singular equation: Fold bifur-

cation of periodic solutions, J. Differential Equations 265 (2018), 2502-2543.

[3] J. Chu and M. Li, Twist periodic solutions of second order singular differential equations, J. Math.
Anal. Appl. 355 (2009), 830-838.

[4] J. Chu, P. J. Torres and F. Wang, Radial stability of periodic solutions of the Gylden-Meshcherskii-type

problem, Discrete Contin. Dyn. Syst. 35 (2015), 1921-1932.
[5] J. Chu, P. J. Torres and F. Wang, Twist periodic solutions for differential equations with a combined

attractive-repulsive singularity, J. Math. Appl. Anal. 437 (2016), 1070-1083.
[6] J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions, Discrete

Contin. Dyn. Syst. 21 (2008), 1071-1094.

[7] T. Ding, A boundary value problem for the periodic Brillouin focusing system, Acta Sci. Natur. Univ.
Pekinensis 11 (1965), 31-38 (in Chinese).

[8] J. K. Hale, Ordinary differential equations, Krieger Publishing Company, 1969.

[9] R. Hakl, P. J. Torres and M. Zamora, Periodic solutions to singular second order differential equations:
the repulsive case, Topol. Methods Nonlinear Anal. 39 (2012), 199-220.

[10] J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the

forced pendulum, SIAM J. Math. Anal. 35 (2003), 844-867.
[11] Q. Liu and D. Qian, Nonlinear dynamics of differential equations with attractive-repulsive singularities

and small time-dependent coefficients, Math. Methods Appl. Sci. 36 (2013), 227-233.

[12] R. Ortega, Periodic solutions of a Newtonian equation: stability by the third approximation, J. Differ-
ential Equations 128 (1996), 491-518.

[13] E. Pinney, The nonlinear differential equation y′′(x) + p(x)y + cy−3 = 0, Proc. Amer. Math. Soc. 1
(1950), 681.

[14] P. J. Torres, Existence and uniqueness of elliptic periodic solutions of the Brillouin electron beam

focusing system, Math. Methods Appl. Sci. 23 (2000), 1139-1143.
[15] P. J. Torres, Twist solutions of a Hill’s equations with singular term, Adv. Nonlinear Stud. 2 (2002),

279-287.

[16] P. J. Torres, Mathematical Models with singularities - A Zoo of Singular Creatures, Atlantis Press,
2015.

[17] P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations, Nonlinear Anal.

56 (2004), 591-599.
[18] F. Wang, J. A. Cid and M. Zima, Lyapunov stability for regular equations and applications to the

Liebau phenomenon, Discrete Contin. Dyn. Syst. 38 (2018), 4657-4674.

[19] Z. Wang, J. Li and T. Ma, An erratum note on the paper: Positive periodic solution for Brillouin
electron beam focusing system, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), 1995-1997.

[20] M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation,
J. London Math. Soc. 67 (2003), 137-148.

1 Aliyun School of Big Data, Changzhou University, Changzhou 213164, China

2 Department of Mathematics, Nanjing University, Nanjing 210093, China
Email address: fengwang188@163.com (F. Wang)

3 Departamento de Matemáticas, Universidade de Vigo, 32004, Pabellón 3, Campus de Ourense,

Spain
Email address: angelcid@uvigo.es (J.A. Cid)

4 College of Science, Hainan University, Haikou, 570228, China
Email address: shjli626@126.com (S. Li)

5 Department of Functional Analysis, Faculty of Mathematics and Natural Sciences, Univer-
sity of Rzeszów, Pigonia 1, 35-959 Rzeszów, Poland

Email address: mzima@ur.edu.pl (M. Zima)


	cid1.pdf
	20_WCLZ_AML.pdf
	1. Introduction
	2. Main results
	2.1. Existence of periodic solutions for equation (3)
	2.2. Instability of periodic solutions for equation (3)
	2.3. Lyapunov stability of periodic solutions for equation (3)

	3. Applications to some singular models
	3.1. The Brillouin equation
	3.2. A Rayleigh-Plesset equation
	3.3. A Gylden-Meshcherskii type equation

	Acknowledgments
	References


