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Abstract. We identify a gap between the existence of a left-inverse and the

existence of the inverse of a matrix. By filling that gap in a new way we provide
a novel proof of the two sidedness of the matrix inverse.

We propose a trip into linear algebra by discussing the reason for a well-known
elementary fact: the two sidedness of the inverse of a matrix.

Theorem 1. A ·B = In ⇒ B ·A = In.

Throughout this paper A and B always shall denote n× n matrices over a field
K, In shall stand for the identity matrix of order n and 0n for the zero column
vector in Kn. For a given matrix A we shall denote its columns by Ai, i = 1, . . . n.

The key for understanding Theorem 1 is summarized in the following result.

Theorem 2. Suppose that A ·B = In, then:

(i) B · x = 0n ⇒ x = 0n. (∗)

(ii) ∀ y ∈ Kn ∃x ∈ Kn /B · x = y (∗∗) ⇒ B ·A = In.

Proof. (i) B ·x = 0n ⇒ A·(B ·x) = A·0n ⇒ (A·B)·x = 0n ⇒ In ·x = 0n ⇒ x = 0n.
(ii) From (∗∗) it follows that for Iin there exists Ci ∈ Kn such that B · Ci = Iin ,
for each i = 1, . . . n, and then B · C = In. Then, it suffices to show that

A = A · In = A · (B · C) = (A ·B) · C = In · C = C.

�

Both properties (∗) and (∗∗) are ubiquitous and more than familiar to any algebra
freshman. Their well-known meaning in different frameworks are indicated in the
following diagram that summarizes part of the information given in [6, Chapter 2,
Theorem 8]
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Linear Systems Vector Spaces Linear Mappings

B · x = y {Bi, i = 1, . . . , n} x→ B · x

(∗) Uniqueness
of solution

Independent
vectors

Injective
mapping

(∗∗) Existence
of solution

Generator set
Surjective
mapping

Therefore, if we have A ·B = In and in order to prove that also B ·A = In

what we get is (∗) but what we need is (∗∗).
So, any proof of “(∗)⇒ (∗∗)” will provide a proof of Theorem 1: for instance, the
proof by Fearnley-Sander contained in [3] and the one by Paparella in [8] would
fit this approach. Also the elementary fact that an underdetermined homogeneous
linear system has a nontrivial solution, a result derived from the row echelon form
of the coefficient matrix, leads to the following proof of Theorem 1 that is new to
the best of our knowledge (see [9] for a different proof based on the same principle
and [1, 2, 3, 4, 5, 7] for other approaches).

Proof of Theorem 1. By Theorem 2 it is enough to prove that (∗) implies (∗∗).
Now, for each y ∈ Kn the homogeneous system

(
B1 B2 . . . Bn y

)
·


x1

x2

...
xn

xn+1

 = 0n,

has n equations and n + 1 unknowns and therefore it has a nontrivial solution.
From (∗) it follows that xn+1 6= 0 and then

B ·


−x1/xn+1

−x2/xn+1

...
−xn/xn+1

 = y,

so (∗∗) holds. �

Note that, Theorem 1 holds due to the fortunate fact that in finite-dimensional
vector spaces injective and surjective mappings coincide! However, as it is well
know, this is not true when considering infinite-dimensional vector spaces and, in
fact, Theorem 1 fails in this setting as the counterexample pointed out in [1, Section
4] shows.
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We hope this short excursion had shed some light into the fascinating landscape
of linear algebra and the reader could find something valuable in the trip.
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[4] E. M. Garćıa-Caballero and S. G. Moreno, The double-sidedness of matrix inverses; yet another

proof, College Math. J. 49 (2018) 136–137.
[5] P. Hill, On the matrix equation AB = I, Amer. Math. Monthly 74 (1967) 848–849.

[6] D. C. Lay, S. R. Lay and J. J. McDonald, Linear Algebra and Its Applications, 5th Edition,

Pearson, 2016.
[7] Mathematics Stack Exchange (2020). https://math.stackexchange.com/questions/3852/

if-ab-i-then-ba-i

[8] P. Paparella, A short and elementary proof of the two-sidedness of the matrix inverse, College
Math. J. 48 (2017) 366–367.

[9] F. Sandomierski, An elementary proof of the two-sidedness of matrix inverses, Math. Mag. 85

(2012) 289.


