AN EXCURSION THROUGH THE DOUBLE SIDEDNESS OF THE MATRIX INVERSE

JOSÉ ÁNGEL CID DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDADE DE VIGO, CAMPUS DE OURENSE, 32004, SPAIN ANGELCID@UVIGO.ES, MR ID 695860

ABSTRACT. We identify a gap between the existence of a left-inverse and the existence of the inverse of a matrix. By filling that gap in a new way we provide a novel proof of the two sidedness of the matrix inverse.

We propose a trip into linear algebra by discussing the reason for a well-known elementary fact: the two sidedness of the inverse of a matrix.

Theorem 1. $A \cdot B = I_n \Rightarrow B \cdot A = I_n$.

Throughout this paper A and B always shall denote $n \times n$ matrices over a field K, I_n shall stand for the identity matrix of order n and 0_n for the zero column vector in K^n . For a given matrix A we shall denote its columns by A^i , i = 1, ... n.

The key for understanding Theorem 1 is summarized in the following result.

Theorem 2. Suppose that $A \cdot B = I_n$, then:

(i)
$$B \cdot x = 0_n \Rightarrow x = 0_n.$$
 (*)
(ii) $\forall y \in K^n \exists x \in K^n / B \cdot x = y$ (**) $\Rightarrow B \cdot A = I_n.$

Proof. (i) $B \cdot x = 0_n \Rightarrow A \cdot (B \cdot x) = A \cdot 0_n \Rightarrow (A \cdot B) \cdot x = 0_n \Rightarrow I_n \cdot x = 0_n \Rightarrow x = 0_n.$ (ii) From (**) it follows that for I_n^i there exists $C^i \in K^n$ such that $B \cdot C^i = I_n^i$, for each $i = 1, \ldots n$, and then $B \cdot C = I_n$. Then, it suffices to show that

$$A = A \cdot I_n = A \cdot (B \cdot C) = (A \cdot B) \cdot C = I_n \cdot C = C.$$

Both properties (*) and (**) are ubiquitous and more than familiar to any algebra freshman. Their well-known meaning in different frameworks are indicated in the following diagram that summarizes part of the information given in [6, Chapter 2, Theorem 8]

Therefore, if we have $A \cdot B = I_n$ and in order to prove that also $B \cdot A = I_n$ what we get is (*) but what we need is (**).

So, any proof of "(*) \Rightarrow (**)" will provide a proof of Theorem 1: for instance, the proof by Fearnley-Sander contained in [3] and the one by Paparella in [8] would fit this approach. Also the elementary fact that an underdetermined homogeneous linear system has a nontrivial solution, a result derived from the row echelon form of the coefficient matrix, leads to the following proof of Theorem 1 that is new to the best of our knowledge (see [9] for a different proof based on the same principle and [1, 2, 3, 4, 5, 7] for other approaches).

Proof of Theorem 1. By Theorem 2 it is enough to prove that (*) implies (**). Now, for each $y \in K^n$ the homogeneous system

$$\left(\begin{array}{c|c}B^1 & B^2 & \dots & B^n & y\end{array}\right) \cdot \left(\begin{array}{c}x_1\\x_2\\\vdots\\x_n\\x_{n+1}\end{array}\right) = 0_n,$$

has n equations and n + 1 unknowns and therefore it has a nontrivial solution. From (*) it follows that $x_{n+1} \neq 0$ and then

$$B \cdot \begin{pmatrix} -x_1/x_{n+1} \\ -x_2/x_{n+1} \\ \vdots \\ -x_n/x_{n+1} \end{pmatrix} = y,$$

so (**) holds.

Note that, Theorem 1 holds due to the fortunate fact that in finite-dimensional vector spaces injective and surjective mappings coincide! However, as it is well know, this is not true when considering infinite-dimensional vector spaces and, in fact, Theorem 1 fails in this setting as the counterexample pointed out in [1, Section 4] shows.

We hope this short excursion had shed some light into the fascinating landscape of linear algebra and the reader could find something valuable in the trip.

Acknowledgments

The author wish to thank the anonymous referee and the Editor's constructive comments that led to an improved version of the paper.

References

- C. M. Bang, A condition for two matrices to be inverses of each other, Amer. Math. Monthly 81 (1974) 764–767.
- [2] R. A. Beauregard, A short proof of the two-sidedness of matrix inverses, Math. Mag. 80 (2007) 135–136.
- [3] R. A. Brualdi, Comments and complements (Algebra), Amer. Math. Monthly 83 (1976) 798– 801.
- [4] E. M. García-Caballero and S. G. Moreno, The double-sidedness of matrix inverses; yet another proof, College Math. J. 49 (2018) 136–137.
- [5] P. Hill, On the matrix equation AB = I, Amer. Math. Monthly 74 (1967) 848-849.
- [6] D. C. Lay, S. R. Lay and J. J. McDonald, Linear Algebra and Its Applications, 5th Edition, Pearson, 2016.
- [7] Mathematics Stack Exchange (2020). https://math.stackexchange.com/questions/3852/ if-ab-i-then-ba-i
- [8] P. Paparella, A short and elementary proof of the two-sidedness of the matrix inverse, College Math. J. 48 (2017) 366–367.
- [9] F. Sandomierski, An elementary proof of the two-sidedness of matrix inverses, Math. Mag. 85 (2012) 289.