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Abstract: We provide new su�cient conditions for the existence of T-periodic solutions for the ϕ-laplacian
pendulum equation

(
ϕ(x′)

)′ +k x′ +a sin x = e(t), where e ∈ C̃T . Ourmain tool is a continuation theorem due
to Capietto, Mawhin and Zanolin and we improve or complement previous results in the literature obtained
in the framework of the classical, the relativistic and the curvature pendulum equations.
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1 Introduction
Let us consider the classical pendulum equation

x′′ + k x′ + a sin x = e(t), (1.1)

where
(H0) k ≥ 0, a > 0, T > 0 and e ∈ C̃T the set of continuous T-periodic functions with mean value ē :=

1
T

T∫
0

e(t)dt = 0.

The search for T-periodic solutions of (1.1) has been a fruitful subject over the last century, see [12, 13], and it
is well-known the following general solvability result: there exist s− = s−(k, a, e) and s+ = s+(k, a, e) with

−a ≤ s− ≤ s+ ≤ a,

such that the equation
x′′ + k x′ + a sin x = e(t) + s, (1.2)

has a T-periodic solution if and only if s ∈ [s−, s+]. Moreover, whenever s ∈]s−, s+[ there exist at least two
geometrically di�erent solutions of (1.2). Surprisingly, it is still an open problem to know if the degeneracy
condition s− = s+ can be attained or not.

Following the preceding notation, (1.1) has a T-periodic solution if and only if 0 ∈ [s−, s+]. This is always
true in the conservative framework, i.e. when k = 0, as it was proven by Hamel in [9] and later improved in
[16] by adding a second geometrically di�erent T-periodic solution.

However, the solvability of (1.1) it is not longer ensured in the presence of a friction term: indeed, it has
been proved in [19] that for each k, a, T > 0 there exists e ∈ C̃T such that (1.1) has not T-periodic solutions.
Of course, su�cient conditions for the existence of T-periodic solutions for (1.1) are known, such as

√
T‖e‖2 < k

√
π
√

3, ([16, Remark 1]),
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‖e‖∞ < a, ([16, Remark 2]),

or
T(2T + kπ + δE) < 4, ([6, Remark 4]),

where δE = max
t∈[0,T]

t∫
0

e(s)ds − min
t∈[0,T]

t∫
0

e(s)ds.

Recently, Brézis and Mawhin, [3, Corollary 1], have proven that the relativistic conservative pendulum,
that is  x′√

1 − x′2

c2

′

+ a sin x = e(t), (1.3)

where c > 0 is the speed of the light in the vacuum, a > 0 and e ∈ C̃T , always has a T-periodic solution. Later,
Bereanu and Torres, [2, Corollary 1.2], added the existence of a second T-periodic solution. So, in spite of the
technical di�culties the solvability issue for (1.3) is analogous to the classical setting. To the contrary, Torres
proved in [20] that the forced relativistic pendulum x′√

1 − x′2

c2

′

+ k x′ + a sin x = e(t), (1.4)

always has a T-periodic solution for all k, a, T > 0 and e ∈ C̃T provided that

2cT < 1.

That condition has been improved later in [21, Corollary 3] (see also [7, Remark 1]) and the best bound until
now for the right-hand side, up to our knowledge, was obtained in [1, Theorem 1], namely

2cT < 2
√

3π. (1.5)

However it is not know if there exist examples of non-continuation of periodic oscillations for (1.4) for bigger
values of the period T.

Recently, it has been proven in [11, Theorem 2.1] the solvability of (1.4) under the following alternative
condition to (1.5),

2c*T < 2π, (1.6)

where the constant c* = c*(k, a, T, ‖e‖∞) is implicitly de�ned by the equation

c* =
c
(
kTc* + 3kπ + 2(a + ‖e‖∞)T

)√
c2 +

(
kTc* + 3kπ + 2(a + ‖e‖∞)T

)2
. (1.7)

Notice that 0 < c* < c but that neither (1.5) nor (1.6) are implied by each other, so they are independent.
Both equations, (1.1) and (1.4), �t into the so-called ϕ-Laplacian equations

(
ϕ(x′)

)′ + k x′ + a sin x = e(t), (1.8)

where
(H1)ϕ :] − A, A[−→] − B, B[ is an increasing and odd homeomorphism with 0 < A, B ≤ +∞.
Note that in the classical pendulum equation (1.1) we have ϕ(z) = z while in the relativistic pendulum (1.4) is
ϕ(z) = z√

1 − z2

c2

. Notice also that other important homeomorphisms, like the p-laplacian ϕ(z) = z|z|p−2, with

p ≥ 2, and the mean curvature operator ϕ(z) = z√
1 + z2

also satisfy (H1).
The present paper is organized as follows: in next section we present our main result, several conse-

quences and we discuss their relevance with the literature. In Section 3 we collect the auxiliary results that
wewill need for the proof of ourmain result that is postponed until Section 4. Ourmain toolwill be a Capietto-
Mawhin-Zanolin continuation theorem given in [4]. Finally, in Section 5 we point out a striking di�erence on
the dynamic behaviour between both the classical and relativistic pendulums and the “curvature" pendulum.
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2 Main results
The following is the main result in this paper: a su�cient condition for the existence of multiple T-periodic
solutions for equation (1.8). In the particular case of the relativistic pendulum equation (1.4) we improve
simultaneously both conditions (1.5) and (1.6), see Corollary 2. It also provides an apparently new solvability
condition even for the classical pendulum equation (1.1), see Theorem 6.

Theorem 1. Assume (H0), (H1) and moreover

2kπ + aT
2 + ‖e‖L1

2 < B, (2.1)

and
T
2ϕ

−1
(

2kπ + aT
2 + ‖e‖L1

2

)
< π. (2.2)

Then there exist at least two geometrically di�erent T-periodic solutions of (1.8), x1 and x2, such that:

−π < x1(t) < π for all t ∈ R and x1(t1) = 0 for some t1 ∈ [0, T], (2.3)

0 < x2(t) < 2π for all t ∈ R and x2(t2) = π for some t2 ∈ [0, T]. (2.4)

We remark that condition (2.1) is implicitly assumed in (2.2) and it is trivially ful�lled for unbounded operators
(that is, when B = +∞).

2.1 The relativistic pendulum

Taking ϕ(z) = z√
1 − z2

c2

in Theorem 1 we obtain the following existence result for equation (1.4).

Theorem 2. Let us suppose (H0) and
2Tĉ < 4π, (2.5)

where

ĉ =
c
(

2kπ + aT
2 + ‖e‖L1

2

)
√
c2 +

(
2kπ + aT

2 + ‖e‖L1
2

)2
. (2.6)

Then equation (1.4) has at least two geometrically di�erent T-periodic solutions satisfying (2.3) and (2.4).

Remark 3. As we have previously noticed condition (2.5) improves simultaneously both conditions (1.5) and
(1.6) since 0 < ĉ < c* < c.

Example 4. For each ϵ > 0 let us consider the relativistic pendulum equation(
x′√

1 − x′2

)′
+ ϵ2 x′ + ϵ3 sin x = ϵ3 sin ϵt, (2.7)

where we have normalized c = 1.
Notice that T = 2π

ϵ and lim
ϵ→0+

T = +∞, so condition (1.5) is not satis�ed for small enough ϵ > 0. On the
other hand, since

ĉ = (2 + 3π)ϵ2√
1 + (2 + 3π)2ϵ4

then Theorem 2 provides two T-periodic solutions of (2.7) for each 0 < ϵ < 0.0878689.
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2.2 The p-laplacian pendulum

Taking now ϕ(z) = |z|p−2z for p ≥ 2 in Theorem 1 we obtain the following existence result for the p-laplacian
pendulum. This equation seems to be skipped in the literature and only few references explicitly deal with it,
see [15].

Theorem 5. Suppose (H0), p ≥ 2 and

T
2

(
2kπ + a T2 + ‖e‖L1

2

) 1
p−1

< π. (2.8)

Then equation
(|x′|p−2x′)′ + k x′ + a sin x = e(t), (2.9)

has at least two geometrically di�erent T-periodic solutions satisfying (2.3) and (2.4).

2.3 The classical pendulum

If in Theorem 5we take p = 2 we obtain an existence result for (1.1) that it is new to the best of our knowledge.

Theorem 6. Suppose (H0) and
T
2

(
2kπ + a T2 + ‖e‖L1

2

)
< π. (2.10)

Then equation (1.1) has at least two geometrically di�erent T-periodic solutions satisfying (2.3) and (2.4).

Clearly, if ‖e‖L1
2 < 2π

T then (2.10) is satis�ed for small enough k, a > 0. This observation is applied in the
following result.

Corollary 7. Let us �x T > 0 and e ∈ C̃T such that
‖e‖L1

2 < 2π
T . (2.11)

Then for any k, a > 0 such that
2kπ + a T2 < 2π

T − ‖e‖L1

2 ,

the equation (1.1) has at least two geometrically di�erent T-periodic solutions satisfying (2.3) and (2.4).

2.4 The curvature pendulum

Taking now ϕ(z) = z√
1 + z2

in Theorem 1 we obtain the following existence result for the “curvature" pen-
dulum. Di�erent su�cient conditions for the solvability of curvature pendulum equations were given in
[1, 17, 18].

Theorem 8. Suppose (H0) and moreover

2kπ + a T2 + ‖e‖L1

2 < 1 (2.12)

and
T
2

(
2kπ + aT

2 + ‖e‖L1
2

)
√

1 −
(

2kπ + aT
2 + ‖e‖L1

2

)2
< π. (2.13)

Then equation (
x′√

1 + x′2

)′
+ k x′ + a sin x = e(t), (2.14)

has at least two geometrically di�erent T-periodic solutions satisfying (2.3) and (2.4).
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3 Auxiliary results
By means of the change of variables y = ϕ(x′) + kx, to �nd a T-periodic solution of (1.8) is equivalent to solve
the following periodic boundary value problem for a �rst order system{

x′ = ϕ−1(y − kx), x(0) = x(T),
y′ = −a sin(x) + e(t), y(0) = y(T).

(3.1)

This changes of variables was introduced in [14], inspired by the Liénard plane, and used also in [11]. Notice
that in case ϕ is a bounded homeomorphism (that is, B < +∞), the right-hand side of system (3.1) is not longer
de�ned on the whole plane R2. With this idea in mind let us consider the periodic BVP

z′ = F(t, z), z(0) = z(T), (3.2)

assuming that
F(t, z) := f (t, z; 1),

where f : [0, T] × G × [0, 1]→ Rn, G ⊂ Rn is an open set and f is a Carathéodory function such that for λ = 0
the map f is autonomous, that is, there exists a continuous function f0 : G → Rn such that

f0(z) := f (t, z; 0),

for a.a. t ∈ [0, T] and all z ∈ G.
The following result is just a small modi�cation of [4, Corollary 3] to deal with functions f (t, ·, λ) not

de�ned on the whole Rn.

Lemma 9. Let Ω be a bounded and open subset of Rn such that Ω ⊂ G and suppose that the following condi-
tions are satis�ed:
(CMZ1) (“Bound set" condition) For any λ ∈ [0, 1) and any z solution of

z′ = f (t, z; λ), z(0) = z(T), (3.3)

such that z(t) ∈ Ω for all t ∈ [0, T], it follows that z(t) ∈ Ω for all t ∈ [0, T];
(CMZ2) dB(f0, Ω, 0) ≠ 0, where dB stands for the usual Brouwer degree in Rn.

Then, problem (3.2) has at least one solution z(t) such that z(t) ∈ Ω for all t ∈ [0, T].

Proof. By the Tietze-Dugundji Theorem, see [22, Proposition 2.1], the function f : [0, T] × Ω × [0, 1] → Rn

admits a continuous extension f̃ : [0, T] × Rn × [0, 1] → Rn. Now, we can apply [4, Corollary 3] to obtain a
solution z(t) of problem (3.2) with F(t, z) := f̃ (t, z, 1) such that z(t) ∈ Ω. Then z(t) is also a solution of (3.2)
with F(t, z) := f (t, z, 1).

In order to apply Lemma 9 to problem (3.1) the following estimates about its possible solutions are essential.

Lemma 10. Let us assume (H0) and (H1). For any λ ∈ [0, 1], let (x, y) a solution of the problem{
x′ = ϕ−1(y − kx), x(0) = x(T),
y′ = −a sin(x) + λe(t), y(0) = y(T).

(3.4)

such that
‖x − mπ‖∞ ≤ l, for some 0 < l < π and m ∈ Z.

Then, the following estimates hold:
(i) There exists t0 ∈ [0, T] such that x(t0) = mπ,
(ii) ‖y − kmπ‖∞ ≤ kl + a T2 + ‖e‖L1

2 ,
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(iii) ‖x − mπ‖∞ ≤ max
t∈[0,T]

x(t) − min
t∈[0,T]

x(t) ≤ T2ϕ
−1
(

2kl + a T2 + ‖e‖L1

2

)
.

Proof. De�ne the functions x̃ = x − mπ and ỹ = y − kmπ which satisfy{
x̃′ = ϕ−1(ỹ − kx̃), x̃(0) = x̃(T),
ỹ′ = −a sin(x̃ + mπ) + λe(t), ỹ(0) = ỹ(T).

(3.5)

Integrating the second equation over a period we have

0 = ỹ(T) − ỹ(0) =
T∫

0

ỹ′(s)ds = −a
T∫

0

sin(x̃(s) + mπ)ds,

where −π < −l ≤ x̃(t) ≤ l < π for all t ∈ [0, T]. Since a ≠ 0 it follows the existence of t0 ∈ [0, T] such that
x̃(t0) = 0 which is equivalent to (i).

Now, integrating the �rst equation over a period we get

0 = x̃(T) − x̃(0) =
T∫

0

x̃′(s)ds =
T∫

0

ϕ−1(ỹ(s) − kx̃(s))ds,

and by (H1) it follows the existence of t1 ∈ [0, T] such that ỹ(t1) = kx̃(t1) and then

−kπ < −kl ≤ ỹ(t1) ≤ kl < kπ.

Extending ỹ periodically, if needed, there exists t2 ∈ R such that ỹ(t2) = ‖ỹ‖∞ with |t2 − t1| ≤ T
2 . Without loss

of generality let us suppose that t1 ≤ t2 . Using the second equation of (3.5) we obtain

‖ỹ‖∞ ≤ |ỹ(t1)| +
t2∫
t1

|ỹ′(s)|ds

≤ kl +
t2∫
t1

a| sin(x̃(s) + mπ)|ds + λ
t2∫
t1

e(s)+ds

≤ kl + a T2 + ‖e‖L1

2 ,

and thus (ii) is proven (take into account that since e ∈ C̃T then
T∫

0

e+(s)ds =
T∫

0

e−(s)ds and ‖e‖L1 =

2
T∫

0

e+(s)ds).

Finally, from (i), (ii) and the �rst equation of (3.5) it follows (iii).

4 Proof of Theorem 1
By (2.2) there exists l > 0 such that

T
2ϕ

−1
(

2kπ + a T2 + ‖e‖L1

2

)
< l < π,

and let us consider the open bounded set in R2

Ω1 = {(x, y) ∈ R2 : |x| < l, |y| < kπ + a T2 + ‖e‖L1

2 }. (4.1)
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Now, our strategy to �nd a T-periodic solution x1 satisfying (2.3) is to apply Lemma 9 to the homotopic system
(3.4) and the set Ω1. Notice that by (2.1) we have that Ω1 ⊂ G := {(x, y) ∈ R2 : |y − kx| < B}. So it is enough
to verity the following two claims.

Claim 1. For any λ ∈ [0, 1] and any (x, y) solution of (3.4) such that (x(t), y(t)) ∈ Ω1 for all t ∈ [0, T], it follows
that (x(t), y(t)) ∈ Ω1 for all t ∈ [0, T].

Since (x(t), y(t)) ∈ Ω1 for all t ∈ [0, T] then (x, y) satis�es the assumptions in Lemma 10 with m = 0.
Then, from estimates (iii) and (ii) we have

‖x‖∞ ≤
T
2ϕ

−1
(

2kl + a T2 + ‖e‖L1

2

)
< T2ϕ

−1
(

2kπ + a T2 + ‖e‖L1

2

)
< l,

‖y‖∞ ≤ kl + a T2 + ‖e‖L1

2 < kπ + a T2 + ‖e‖L1

2
and so (x(t), y(t)) ∈ Ω1 for all t ∈ [0, T].

Claim 2. dB(f0, Ω1, (0, 0)) ≠ 0 where f0(x, y) = (ϕ−1(y − kx), −a sin(x)).
Since 0 < l < π and a ≠ 0, the only zero of f0 in Ω1 is (0, 0) and then dB(f0, Ω1, (0, 0)) is well de�ned.

Since Ω1 is symmetric with (0, 0) ∈ Ω1 and f0 is continuous in Ω1 and odd, then by Borsuk’s theorem it
follows that dB(f0, Ω1, (0, 0)) is odd. Thus the claim follows.

Finally, the proof of the existence of a T-periodic solution x2 satisfying (2.4) is analogous by using the
open bounded set

Ω2 = {(x, y) ∈ R2 : |x − π| < l, |y − kπ| < kπ + a T2 + ‖e‖L1

2 }. (4.2)

Indeed, the analogous to Claim 1 follows from the estimates provided in Lemma 10 with m = 1. On the other
hand, for the analogous to Claim 2 consider the homeomorphism T : Ω1 → Ω2 de�ned by T(x, y) = (x+π, y+
kπ). By the Product Formula (see [8, Theorem 5.1]) we have

dB(f0, Ω2, (0, 0)) = dB(f0 ◦ T, Ω1, (0, 0)) · dB(T, Ω1, z) = dB(f0 ◦ T, Ω1, (0, 0)), (4.3)

since dB(T, Ω1, z) = 1 for any z ∈ Ω2. So we can apply again Borsuk’s theorem to the right hand side of (4.3)
since (f0 ◦ T)(x, y) = (ϕ−1(y − kx), a sin(x)) is again a continuous and odd function.

Remark 11. Adding to (H1) the stronger regularity assumptions ϕ ∈ C1(−ϵ, ϵ), with ϵ > 0, and ϕ′(0) ≠ 0 we
can compute exactly

dB(f0, Ω1, 0) = sign
(
Jf0 (0, 0)

)
= sign

(
− a
ϕ′(0)

)
= −1.

5 A counterexample for the “curvature" pendulum
We have already stressed at Introduction that both equations (1.1), with k = 0, and (1.3) has a T periodic
solution for any a ∈ R and e ∈ C̃T . On the other hand, the “curvature" pendulum, also called the “sine-
curvature" equation, (

x′√
1 + x′2

)′
+ a sin x = e(t), (5.1)

is a ϕ-laplacian type equation with a bounded operator, namely ϕ(z) = z√
1 − z2

∈ (−1, 1). This fact leads

to the following dramatic di�erence with respect to the classical/relativistic pendulum: for each T > 0 and
a ∈ R there exists e ∈ C̃T such that equation (5.1) has not any solution de�ned on the whole interval [0, T]. In
particular, for such e ∈ C̃T the equation (5.1) has not T periodic solutions in clear contrast with the classical
and the relativistic settings. The key di�erence is that the kinetic energy of the “curvature" pendulum, that is
Ekin(x) := 1√

1+x′2 , is a priori bounded independently of the solution (quite surprinsingly, even if the velocity
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Fig. 1: Phase plane for (5.2) with the values a = 1 and H = 1.

of the solution tends to in�nity its kinetic energy remains bounded!). The approach in this section is inspired
on some previous ideas developed in [10] to obtain counterexamples to the existence of solutions between
well-ordered lower and upper solutions without the so-called Nagumo condition.

Lemma 12. Let us consider a ∈ R and H > 0. If x is any solution of the equation(
x′√

1 + x′2

)′
+ a sin x = |a| + H, (5.2)

de�ned on the interval [C, D] then D − C < 2
H .

Proof. Note that (5.2) is an autonomous equation that admits the energy function

E(u, v) := 1√
1 + v2

+ a cos(u) + (|a| + H)u, (5.3)

which is constant along the solutions of (5.2). Moreover, the potential V(u) := a cos(u) + (|a| + H)u is an
increasing homeomorphism from R onto R since V ′(u) = −a sin(u) + |a| + H ≥ H > 0 for all u ∈ R. If x is
a solution of (5.2) from a phase plane analysis it follows that x vanishes at only one point, say t0, where x
attains its global minimum. Then, if x is de�ned for any time t1 > t0 we have that x′(t) > 0 for all t ∈ (t0, t1]
and since

E(x(t), x′(t)) = E(x(t0, x′(t0))) := E0 for all t ∈ [t0, t1],

by (5.3) we obtain

x′(t) =
√

1 − (E0 − V(x(t)))2

E0 − V(x(t)) for all t ∈ [t0, t1].

Thus

t1 − t0 =
x(t1)∫
x(t0)

E0 − V(s)√
1 − (E0 − V(s))2

ds.

Let us de�ne u(s) := E0 − V(s) and observe that u(s) ∈ (0, 1] for all s ∈ [x(t0), x(t1)] and moreover u′(s) =
−V ′(s) ≤ −H < 0. Then,
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t1 − t0 =
x(t1)∫
x(t0)

u(s)√
1 − (u(s))2

u′(s)
u′(s)ds ≤ −

1
H

x(t1)∫
x(t0)

u(s)√
1 − (u(s))2

u′(s)ds

= − 1
H

u(x(t1))∫
u(x(t0))

u√
1 − u2

du = 1
H

u(x(t0))∫
u(x(t1))

u√
1 − u2

du

< 1
H

1∫
0

u√
1 − u2

du = − 1
H
√

1 − u2 |u=1
u=0 = 1

H .

By an analogous reasoning in case t1 < t0 we get the desired result.

Remark 13. Lemma 12 means that the maximal interval of de�nition for any solution of (5.2) is �nite. Fur-
thermore, the length of any of those maximal intervals is uniformly bounded by the explicit constant 2

H . To
the contrary, note that for −2|a| ≤ H ≤ 0 the equation (5.2) admit constant solutions, thus de�ned on the
whole real line.

On the other hand, from [6, Corollary 2] it follows that the Dirichlet problem(
x′√

1 + x′2

)′
= H > 0, u(0) = u(1) = 0,

has a solution if and only if 0 < H < 2. So, the necessary condition given in Lemma 12 for the existence of a
solution of (5.2) on an interval [C, D] is sharp.

Theorem 14. For any T > 0 and a ∈ R, let us consider H > 4
T and e ∈ C̃T such that

e(t) = |a| + H for all t ∈ [0, T/2].

Then equation (5.1) has not any solution de�ned on [0, T].

Proof. Clearly, (5.1) can not have a solution de�ned on [0, T] because in that case (5.2) would have a solution
de�ned on [0, T/2], in contradiction with Lemma 12.

Corollary 15. Given T > 0, a ∈ R and e ∈ C̃T as in Theorem 14 the equation (5.1) has not T- periodic solutions.

Corollary 15 was obtained by other methods in [18], see also [17], but we stress that Theorem 14 can be ap-
plied not only for periodic, but also for any other kind of boundary conditions, like for instance Dirichlet or
Neumann.
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