Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Regular Articles

New Lipschitz–type conditions for uniqueness of solutions of ordinary differential equations

José Ángel Cid ^a*,*b, Rodrigo López Pouso ^a*,*c*,*∗, Jorge Rodríguez López ^a*,*^c

^a CITMAga, 15782 Santiago de Compostela, Spain
^b Universidade de Vigo, Departamento de Matemáticas, Campus de Ourense, 32004, Spain
^c Universidade de Santiago de Compostela, Departamento de Estatística, Análise Mate *Optimización, Campus Vida, 15782 Santiago de Compostela, Spain*

A R T I C L E I N F O A B S T R A C T

Article history: Received 15 June 2021 Available online 23 May 2022 Submitted by M. Quincampoix

Keywords: Uniqueness Ordinary differential equation Lipschitz condition Osgood condition

1. Introduction

This paper considers local uniqueness of solutions of initial value problems such as

$$
x'(t) = f(t, x(t)), \quad x(t_0) = x_0,\tag{1.1}
$$

where $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ is a given function. A good account of this classical subject can be found in [[1\]](#page-12-0), see also [[7,9](#page-12-0)].

In order to give a flavor of the kind of results we obtain in this paper our starting point is the one-sided Montel–Tonelli's condition $[1,6]$ $[1,6]$ that, roughly speaking, implies the local uniqueness for problem (1.1) with $t > t_0$ provided that the nonlinearity f satisfies

$$
f(t, y) - f(t, x) \le k(t) \varphi(y - x), \quad \text{for } x < y,\tag{1.2}
$$

* Corresponding author.

<https://doi.org/10.1016/j.jmaa.2022.126349>

We present some generalized Lipschitz conditions which imply uniqueness of solutions for scalar ODEs. We illustrate the applicability of our results with examples not covered by earlier Lipschitz–type uniqueness tests.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

E-mail addresses: angelcid@uvigo.es (J.Á. Cid), rodrigo.lopez@usc.es (R. López Pouso), jorgerodriguez.lopez@usc.es

⁽J. Rodríguez López).

⁰⁰²²⁻²⁴⁷X/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license [\(http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/)).

where *k* is integrable and $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0, \varphi(z) > 0$ for $z > 0$, and \int_0^z $\int_0^{\epsilon} \frac{dz}{\varphi(z)} = +\infty$ for every $\epsilon > 0$.

Our key improvement in Montel–Tonelli's condition is to allow the presence of a nonnegative continuous function q in (1.2) (1.2) , namely

$$
f(t,y)g(y) - f(t,x)g(x) \le k(t)\varphi\left(\int\limits_x^y g(s) \, ds\right), \quad \text{for } x < y. \tag{1.3}
$$

Remarkably, condition (1.3) is satisfied when *g* is bounded below by a positive constant and the product $f(t, x)g(x)$ is Lipschitz–continuous with respect to x which does not imply, as we will see, that $f(t, x)$ be Lipschitz continuous with respect to *x*.

We stress that our condition (1.3) can be employed even when (1.1) (1.1) has a singularity at t_0 and, of course, can be adapted to deal with solvability on the left of *t*0. So in this way we obtain, by means of the two–sided counterpart of condition (1.2) (1.2) (1.2) , a uniqueness result valid for an interval centered at $t₀$. We also point out that for simplicity we state and prove our results in the scalar setting but we show how they can be extended to the *n*-dimensional case.

Another approach, initiated in [\[14\]](#page-13-0), that we explore in the final part of the paper is the transference of assumptions from the *x* variable to the *t* variable in order to ensure the uniqueness of the solution. Inspired by [[10\]](#page-13-0) we are able to obtain such transference even if $f(t_0, x_0) = 0$, a situation that is typically avoided by the so–called transversality condition [[13\]](#page-13-0).

This paper is organized as follows: in Section 2 we use a generalized Gronwall lemma to prove our main uniqueness result for solutions of [\(1.1\)](#page-0-0) on the right of *t*0, and we discuss some particular cases and variants; in Section [3](#page-8-0) we deduce analogous uniqueness results for (1.1) (1.1) on the left of t_0 by means of a change of variable and derive a two–sided uniqueness result and a multidimensional extension; finally, in Section [4,](#page-10-0) we transfer assumptions from the *x* variable to the *t* variable by means of reciprocal problems, in a sense to be precised there. We also provide several examples through the text to illustrate the applicability of our results.

2. A generalized one–sided Lipschitz condition

Let $t_0, x_0, a, b \in \mathbb{R}, a > 0, b > 0$, and consider a continuous function

$$
f:(t_0,t_0+a]\times[x_0-b,x_0+b]\longrightarrow\mathbb{R}.
$$

We are concerned with uniqueness of solution of the initial value problem

$$
x' = f(t, x), \ t > t_0, \quad x(t_0) = x_0,\tag{2.4}
$$

which might exhibit a singularity at the initial time t_0 , thus forcing us to relax the classical notion of a solution as follows.

Definition 2.1. A solution of (2.4) is a continuous function

$$
x : [t_0, t_0 + c] \longrightarrow [x_0 - b, x_0 + b],
$$
 for some $c \in (0, a],$

such that $x(t_0) = x_0$ and $x'(t) = f(t, x(t))$ for all $t \in (t_0, t_0 + c]$.

As an instance, consider the initial value problem

$$
x' = \frac{1}{2\sqrt{t}}, \ t > 0, \quad x(0) = 0,
$$

which has a singularity at $t = 0$ and a unique solution $x(t) = \sqrt{t}$, $t \ge 0$.

*t*1

Our proofs lean on the following generalized Gronwall lemma.

Lemma 2.1. $\begin{bmatrix} \n\mu, \text{ Lemma 2.1} \n\end{bmatrix} Let \varphi : [0, +\infty) \to [0, +\infty) be a nondecreasing function, with \varphi(0) = 0, \varphi(z) > 0$ *for* $z > 0$ *, and* \int_0^{ε} $\frac{d}{d\zeta} \frac{dz}{\varphi(z)} = +\infty$ for every $\varepsilon > 0$. Let $t_1, t_2 \in \mathbb{R}$, $t_1 < t_2$, $k : [t_1, t_2] \to [0, +\infty)$ measurable, and $\int_{t_1}^{t_2} k(s)ds < +\infty$. $If u : [t_1, t_2] \to \mathbb{R}$ *is continuous and*

> $0 \leq u(t) \leq$ \int $k(s)\varphi(u(s))ds$ *for all* $t \in (t_1, t_2]$, (2.5)

then $u(t) = 0$ *for all* $t \in [t_1, t_2]$ *.*

We are already in a position to prove one of the main results in this paper about uniqueness of solutions.

Theorem 2.1. Assume there exist a continuous function $g:(x_0-b,x_0+b) \longrightarrow [0,\infty), g(x)>0$ almost everywhere, and a function $k \in L^1((t_0,t_0+a],[0,\infty))$ such that for almost every $t \in (t_0,t_0+a]$ we have

$$
f(t,y)g(y) - f(t,x)g(x) \le k(t)\varphi\left(\int\limits_x^y g(s) \, ds\right) \quad \text{whenever } x_0 - b < x < y < x_0 + b,\tag{2.6}
$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and - *ε* $\frac{dz}{\varphi(z)} = +\infty$ for every $\varepsilon > 0$.

Then problem [\(2.4\)](#page-1-0) has at most one solution.

Proof. Let us define the increasing function

$$
G(x) = \int_{x_0}^{x} g(s) ds, \quad x \in (x_0 - b, x_0 + b),
$$

which is continuously differentiable on $(x_0 - b, x_0 + b)$.

Reasoning by contradiction, let us assume that $x(t)$ and $y(t)$ are two different solutions of ([2.4\)](#page-1-0). Without loss of generality, we assume that there exist $t_1, t_2 \in [t_0, t_0 + a]$ such that $t_1 < t_2, x(t_1) = y(t_1)$ and $x_0 - b < x(t) < y(t) < x_0 + b$ for all $t \in (t_1, t_2]$.

For almost every $t \in (t_1, t_2]$, condition (2.6) yields

$$
(G \circ y)'(t) - (G \circ x)'(t) = y'(t)g(y(t)) - x'(t)g(x(t))
$$

= $f(t, y(t))g(y(t)) - f(t, x(t))g(x(t)) \le k(t)\varphi\left(\int_{x(t)}^{y(t)} g(s) ds\right).$

Let us denote $u(t) = G \circ y - G \circ x$, and observe that the previous inequality yields

$$
0 \le u(t) \le \int\limits_{t_1}^t k(s)\varphi(u(s)) \ ds \quad \text{for all } t \in [t_1, t_2].
$$

We deduce from Lemma [2.1](#page-2-0) that $u(t) = 0$ on $[t_1, t_2]$, a contradiction with $x < y$ on $(t_1, t_2]$. \Box

Remark 2.1. Condition [\(2.6](#page-2-0)) with $q \equiv 1$, is just the scalar version of Montel–Tonelli's uniqueness criterium, see [\[6](#page-12-0)].

Of course, with $g \equiv 1$, k constant and $\varphi(z) = z$ for all $z \ge 0$, we recover the classical one–sided Lipschitz condition

$$
f(t,y) - f(t,x) \le k(y - x), \quad x \le y.
$$

Observe also that if $g \equiv 1$ and $k \equiv 0$ then condition ([2.6](#page-2-0)) reduces to Peano's uniqueness condition, namely, $f(t, x)$ nonincreasing with respect to x .

Remarkably, condition [\(2.6\)](#page-2-0) is satisfied provided that for some $L \geq 0$ and every *t* we have

$$
f(t, y)g(y) - f(t, x)g(x) \le L(y - x), \quad x \le y,
$$
\n(2.7)

and there exists $\rho > 0$ such that $g(x) \ge \rho$, $x \in (x_0 - b, x_0 + b)$. Indeed, notice that for $x_0 - b < x < y < x_0 + b$ we have

$$
\int_{x}^{y} g(s) ds \ge \rho(y - x),
$$

so condition [\(2.6](#page-2-0)) holds with $k = L\rho^{-1}$ and $\varphi(z) = z$ for all $z \ge 0$.

Notice that (2.7) does not imply that $f(t, x)$ be Lipschitz with respect to x, as we show in the next example.

Example 2.1. We shall prove that problem

$$
x' = 1 + \sqrt[3]{x} - x\sqrt{t}, \ t \ge 0, \quad x(0) = 0,
$$

has a unique solution.

First, Peano's Theorem ensures the existence of at least one solution on some interval $[0, a]$, $a > 0$.

Now, we prove uniqueness on [0*, a*] by means of Theorem [2.1](#page-2-0).

Consider $f(t, x) = 1 + \sqrt[3]{x} - x\sqrt{t}$ for all $(t, x) \in [0, a] \times [-1/2, 1/2]$ and take the positive continuous function

$$
g(x) = \frac{1}{1 + \sqrt[3]{x}}, \quad x \in [-1/2, 1/2].
$$

Observe that

$$
f(t,x)g(x) = 1 - \sqrt{t} \frac{x}{1 + \sqrt[3]{x}},
$$

and the function $h(x) = x/(1 + \sqrt[3]{x})$ is increasing on [−1/2*,* 1/2]. Hence, condition (2.7) holds with $L = 0$, which implies condition (2.6) (2.6) .

Finally, observe that $f(t, x)$ is not Lipschitz continuous with respect to x or t on any neighborhood of the initial condition. Moreover, for any $t \in [0, 1]$ the mapping $f(t, \cdot)$ is increasing on some interval around the initial condition $x = 0$, thus falling outside the scope of Peano's uniqueness theorem.

The following elementary lemma is helpful in order to construct examples involving more general Kamke– Osgood functions φ in condition [\(2.6](#page-2-0)).

Lemma 2.2. *If* $\psi : [0, \infty) \to [0, \infty)$ *is nondecreasing and concave, and* $\psi(0) = 0$ *, then for any* $a, b \in [0, \infty)$ *we have*

$$
|\psi(a) - \psi(b)| \le \psi(|a - b|).
$$

Proof. The result is trivial if $a = 0$ or $b = 0$ or $a = b$, so let us assume, without loss of generality, that $0 < a < b$. Since ψ is nondecreasing,

$$
|\psi(a) - \psi(b)| = \psi(b) - \psi(a).
$$

Since ψ is concave, the slope of the secant line through $(a, \psi(a))$ and $(b, \psi(b))$ is less or equal than the slope of the segment $(0, \psi(0)) = (0, 0)$ and $(b, \psi(b))$, i.e.

$$
\frac{\psi(b)-\psi(a)}{b-a}\leq \frac{\psi(b)}{b}.
$$

Analogously, the slope of the segment joining $(0, \psi(0)) = (0, 0)$ and $(b, \psi(b))$ is less than or equal to the slope of the segment with endpoints $(0, \psi(0)) = (0, 0)$ and $(b - a, \psi(b - a))$, i.e.

$$
\frac{\psi(b)}{b} \le \frac{\psi(b-a)}{b-a},
$$

and the proof is complete. \Box

Next proposition contains a family of examples for which condition (2.6) (2.6) is satisfied with a nontrivial Kamke–Osgood function φ .

Proposition 2.1. Assume there exist a continuous function $g:(x_0-b,x_0+b) \longrightarrow [0,\infty), g(x) \ge \rho > 0$ for all $x \in (x_0 - b, x_0 + b)$, and a function $k \in L^1((t_0, t_0 + a], [0, \infty))$ such that for almost every $t \in (t_0, t_0 + a]$ *and* $all x \in (x_0 - b, x_0 + b)$ *we have*

$$
f(t,x)g(x) = k(t)\psi(|h(t,x)|),
$$
\n(2.8)

where $h: I \times [x_0 - b, x_0 + b] \to \mathbb{R}$ is Lipschitz-continuous with respect to x and Lipschitz constant $L > 0$ $and \psi : [0, \infty) \rightarrow [0, \infty)$ *is increasing, concave,* $\psi(0) = 0$ *, and there exists*

$$
\lim_{z \to 0^+} \frac{\psi(L\rho^{-1}z)}{-z \ln z} \in \mathbb{R}.
$$
\n(2.9)

Then, problem [\(2.4\)](#page-1-0) has at most one solution.

Proof. It suffices to show that condition ([2.6\)](#page-2-0) holds for some function φ in the conditions of Theorem [2.1](#page-2-0). To do so, observe that for a.a. $t \in (t_0, t_0 + a]$ and $x_0 - b < x < y < x_0 + b$ we have, by Lemma 2.2, that

$$
f(t,y)g(y) - f(t,x)g(x) = k(t)[\psi(|h(t,y)|) - \psi(|h(t,x)|)] \le k(t)\psi(|h(t,y) - h(t,x)|)
$$

$$
\le k(t)\psi(L|y-x|) \le k(t)\psi\left(L\rho^{-1}\int_x^y g(s)\,ds\right).
$$

Therefore, condition [\(2.6](#page-2-0)) holds with $\varphi(z) = \psi(L\rho^{-1}z)$, $z \ge 0$, which is nondecreasing, $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and for any $\varepsilon > 0$ we have

$$
\int\limits_0^\varepsilon\frac{dz}{\varphi(z)}=+\infty
$$

due to [\(2.9\)](#page-4-0) and

$$
\int_{0}^{\mathbf{e}^{-1}} \frac{dz}{-z \ln z} = +\infty. \quad \Box
$$

When we have some additional information about all possible solutions we can allow *g* to have a weak singularity at x_0 , that is

$$
\lim_{x \to x_0^+} g(x) = +\infty \quad \text{and} \quad \int_{x_0}^{x_0+b} g(s) \, ds < \infty.
$$

So, we focus on the case of non–negative right–hand sides under the following basic assumption, which avoids constant solutions:

(*H*1) $f(\cdot, x_0)$ is not identically zero on $(t_0, t_0 + \varepsilon)$ for any $\varepsilon \in (0, a)$.

Theorem 2.2. Let $f : (t_0, t_0 + a] \times [x_0, x_0 + b] \longrightarrow [0, \infty)$ satisfy (*H*1).

Assume that there exist a continuous and integrable function $g:(x_0, x_0 + b) \longrightarrow [0, \infty), g(x) > 0$ almost everywhere, and a function $k \in L^1((t_0,t_0+a],[0,\infty))$ such that for almost every $t \in (t_0,t_0+a]$ we have

$$
f(t,y)g(y) - f(t,x)g(x) \le k(t)\varphi\left(\int\limits_x^y g(s) \, ds\right) \quad \text{whenever } x_0 < x < y < x_0 + b,\tag{2.10}
$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and - *ε* $\frac{dz}{\varphi(z)} = +\infty$ for every $\varepsilon > 0$.

Then problem ([2.4](#page-1-0)) has at most one solution.

Proof. Observe that solutions (if any) are nondecreasing, which, along with condition $(H1)$, implies that solutions cannot assume again the value x_0 in the interval $(t_0, t_0 + a]$.

Now, let $x, y : [t_0, t_0 + c] \longrightarrow [x_0, x_0 + b]$ be two different solutions of [\(2.4](#page-1-0)). For definiteness, assume that for some $t_2 \in (t_0, t_0 + c)$ we have $x(t_2) < y(t_2) < x_0 + b$. By continuity of x and y, there exists $t_1 \in [t_0, t_2)$ such that

$$
x(t_1) = y(t_1)
$$
 and $x_0 < x(t) < y(t) < x_0 + b$ on $(t_1, t_2]$.

Now the proof follows exactly as in Theorem [2.1](#page-2-0) (integrability of *g* on $(x_0, x_0 + b)$ is needed to have a well–defined function $G(x) = \int_{x_0}^x g(s) ds$ for all $x \in (x_0, x_0 + b)$. \Box

Remark [2.2](#page-5-0). Assumption (*H*1) is fundamental in Theorem 2.2: the function $f(t, x) = \sqrt{x}$ defined on $(0, 1] \times$ [0, 1] satisfies condition [\(2.10](#page-5-0)) (with $g(x) = \frac{1}{\sqrt{x}}$, $k \equiv 0$ and $\varphi(z) = z$) but *f* does not satisfy (*H*1) and the associated initial value problem

$$
x' = \sqrt{x}
$$
, $x(0) = 0$, $t > 0$,

is a paradigmatic example of nonuniqueness.

There are many non–Lipschitz functions in the conditions of Theorem [2.2.](#page-5-0) In the next proposition we present a family of functions which satisfy condition [\(2.10](#page-5-0)) with $\varphi(z) = z$ and some constant function $k(t) \equiv k \geq 0.$

Proposition 2.2. *Let* $f : [t_0, t_0 + a] \times [x_0, x_0 + b] \longrightarrow \mathbb{R}$ *be expressible in the form*

$$
f(t, x) = F(t, x) + G(t, x) (x - x_0)^r, \text{ for some } r \in (0, 1).
$$

If $F(t, x) \ge 0$ for all $(t, x) \in [t_0, t_0 + a] \times [x_0, x_0 + b]$ and there exists $L \ge 0$ such that for every $t \in [t_0, t_0 + a]$ *we have*

$$
F(t, y) - F(t, x) \le L(y - x) \quad and \quad G(t, y) - G(t, x) \le L(y - x), \quad whenever \ x_0 < x < y < x_0 + b,\ (2.11)
$$

then the function $f(t, x)$ satisfies ([2.10](#page-5-0)) with $\varphi(z) = z$, $g(x) = (x - x_0)^{-r}$ and $k = Lb^r + L$.

If moreover $G(t, x) \ge 0$ for all $(t, x) \in [t_0, t_0 + a] \times [x_0, x_0 + b]$ then we also have

$$
f(t, x) \ge 0
$$
 for all $(t, x) \in [t_0, t_0 + a] \times [x_0, x_0 + b]$.

On the other hand, it is clear that f satisfies condition (*H*1) *if and only if F does so.*

Proof. Let $t \in [t_0, t_0 + a]$ be fixed and $x_0 < x < y < x_0 + b$. We have

$$
\frac{F(t,y)}{(y-x_0)^r} - \frac{F(t,x)}{(x-x_0)^r} \le \frac{F(t,y) - F(t,x)}{(y-x_0)^r} \le L \frac{y-x}{(y-x_0)^r} \le L \int_x^y g(s) \, ds,
$$

hence

$$
f(t,y)g(y) - f(t,x)g(x) = \frac{F(t,y)}{(y-x_0)^r} - \frac{F(t,x)}{(x-x_0)^r} + G(t,y) - G(t,x) \le L \int_x^y g(s) \, ds + L(y-x).
$$

On the other hand,

$$
\int_{x}^{y} g(s) ds = \int_{x}^{y} (s - x_0)^{-r} ds \ge (y - x_0)^{-r} (y - x) \ge b^{-r} (y - x).
$$

Summing up, for each fixed $t \in [t_0, t_0 + a]$ and $x_0 < x < y < x_0 + b$ we have

$$
f(t,y)g(y) - f(t,x)g(x) \le k \int\limits_x^y g(s) \, ds,
$$

for $k = Lb^r + L$. \Box

Proposition [2.2](#page-6-0) is very useful in the application of Theorem [2.2,](#page-5-0) as we show in our next example.

Example 2.2. The initial value problem

$$
x' = \sqrt{t}x^4 + \sqrt[3]{t} + (t + x^2)\sqrt[5]{x^4}, \ t \ge 0, \quad x(0) = 0,
$$

has a unique solution.

Once again, existence follows from Peano's theorem. Now if $x : [0, c] \longrightarrow [0, \infty)$ is a solution, we take $b > x(c)$ and we observe that the right–hand side of the ODE can be written as

$$
f(t, x) = F(t, x) + G(t, x)x^{4/5}
$$

for $F(t, x) = \sqrt{t}x^4 + \sqrt[3]{t}$ and $G(t, x) = t + x^2$ for all $(t, x) \in [0, c] \times [0, b]$. By virtue of Proposition [2.2](#page-6-0), $f(t, x)$ satisfies ([2.10\)](#page-5-0) with $\varphi(z) = z$ for $z \ge 0$, $g(x) = x^{-4/5}$ for $x \in (0, b)$, and a sufficiently large constant $k > 0$. Moreover $G(t, x) \geq 0$ and F satisfies (H1) so all the assumptions of Theorem [2.2](#page-5-0) are satisfied.

Observe that $f(t, x)$ is not Lipschitz continuous with respect to x, nor with respect to t, on any neighborhood of the initial condition (0*,* 0), thus falling outside the scope of the results in [\[3,5](#page-12-0)[,10](#page-13-0),[12,14\]](#page-13-0).

There is an analog to Theorem [2.2](#page-5-0) for negative right–hand sides.

Theorem 2.3. Let $f : (t_0, t_0 + a] \times [x_0 - b, x_0] \longrightarrow (-\infty, 0]$ satisfy (*H*1).

Assume there exist a continuous and integrable function $g:(x_0-b,x_0) \longrightarrow [0,\infty), g(x)>0$ almost everywhere, and a function $k \in L^1((t_0,t_0+a],[0,\infty))$ such that for almost every $t \in (t_0,t_0+a]$ we have

$$
f(t,y)g(y) - f(t,x)g(x) \le k(t)\varphi\left(\int\limits_x^y g(s) \, ds\right) \quad \text{whenever } x_0 - b < x < y < x_0,\tag{2.12}
$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and - *ε* $\frac{dz}{\varphi(z)} = +\infty$ for every $\varepsilon > 0$.

Then problem ([2.4](#page-1-0)) has at most one solution.

We close this section with an alternative version of Theorem [2.2](#page-5-0) which guarantees uniqueness of the constant solution $x(t) = x_0$ when $f(\cdot, x_0) \equiv 0$ and replaces the Lipschitz–type condition by just a bound on $f(t, y)g(y)$.

Theorem 2.4. Let $f: (t_0, t_0 + a] \times [x_0, x_0 + b] \longrightarrow [0, \infty)$ be such that $f(t, x_0) = 0$ for all $t \in (t_0, t_0 + a]$.

Assume that there exist a continuous and integrable function $g:(x_0,x_0+b)\longrightarrow [0,\infty), g(x)>0$ almost everywhere, and a function $k \in L^1((t_0,t_0+a], [0,\infty))$ such that for almost every $t \in (t_0,t_0+a]$ we have

$$
f(t,y)g(y) \le k(t)\varphi\left(\int_{x_0}^y g(s) \, ds\right) \quad \text{whenever } x_0 < y < x_0 + b,\tag{2.13}
$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and - *ε* $\frac{dz}{\varphi(z)} = +\infty$ for every $\varepsilon > 0$.

Then problem ([2.4](#page-1-0)) only has the *trivial* solution $x(t) = x_0$ *for* all $t \in (t_0, t_0 + a]$ *.*

Proof. If follows as in Theorem [2.1](#page-2-0) with $x(t) = x_0$ and taking into account that now solutions are nondecreasing since f is assumed nonnegative. \Box

3. Backwards uniqueness and a generalized two–sided Lipschitz condition

We recall that backwards uniqueness just needs a change of variable: a function $x(t)$, $t \in [t_0 - c, t_0]$ $(c \in (0, a])$, is a solution of

$$
x'(t) = f(t, x(t)), \ t < t_0, \ x(t_0) = x_0,
$$
\n(3.14)

if and only if $y(t) = x(2t_0 - t)$ is a solution of ([2.4\)](#page-1-0) with $f(t, z)$ replaced by $-f(2t_0 - t, z)$.

The previous observation yields the following corollary of Theorem [2.1.](#page-2-0)

Corollary 3.1. *Let f* : $[t_0 - a, t_0) \times [x_0 - b, x_0 + b]$ → R.

Assume there exist a continuous function $g:(x_0-b,x_0+b) \longrightarrow [0,\infty), g(x)>0$ almost everywhere, and *a function* $k \in L^1([t_0 - a, t_0), [0, \infty))$ *such that for almost every* $t \in [t_0 - a, t_0]$ *we have*

$$
f(t,x)g(x) - f(t,y)g(y) \le k(t)\varphi\left(\int\limits_x^y g(s) \, ds\right) \quad \text{whenever } x_0 - b < x < y < x_0 + b,\tag{3.15}
$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and - *ε* $\int_0^{\epsilon} \frac{dz}{\varphi(z)} = +\infty$ for every $\epsilon > 0$.

Then problem (3.14) has at most one solution.

Proof. The reversed problem

$$
y' = -f(2t_0 - t, y), \ t > 0, \ y(t_0) = x_0,\tag{3.16}
$$

has at most one solution by virtue of Theorem [2.1.](#page-2-0) Indeed, condition (3.15) implies that the right–hand side in the ODE in (3.16) satisfies condition [\(2.6](#page-2-0)). \Box

Obviously, we have similar corollaries of Theorem [2.2](#page-5-0) and Theorem [2.3.](#page-7-0) Pay attention to the domains and signs specified for the nonlinear part in the corresponding statements (for instance, unlike Theorem [2.2](#page-5-0), its corollary applies for negative nonlinearities only).

Corollary 3.2. Let $f : [t_0 - a, t_0) \times [x_0, x_0 + b] \longrightarrow (-\infty, 0]$ satisfy (*H*1).

Assume that there exist a continuous and integrable function $g:(x_0,x_0+b) \longrightarrow [0,\infty), g(x)>0$ almost *everywhere,* and a function $k \in L^1([t_0 - a, t_0), [0, \infty))$ *such that for almost every* $t \in [t_0 - a, t_0]$

$$
f(t,x)g(x) - f(t,y)g(y) \le k(t)\varphi\left(\int_{x_0}^x g(s) \, ds\right) \quad \text{whenever } x_0 < x < y < x_0 + b,\tag{3.17}
$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and - *ε* $\frac{dz}{\varphi(z)} = +\infty$ for every $\varepsilon > 0$.

Then problem (3.14) has at most one solution.

The corresponding corollary of Theorem [2.3](#page-7-0) reads as follows (being analogous the corresponding corollary of Theorem [2.4](#page-7-0)).

Corollary 3.3. Let $f : [t_0 - a, t_0) \times [x_0 - b, x_0] \longrightarrow [0, \infty)$ satisfy (*H*1).

Assume there exist a continuous and integrable function $g : (x_0 - b, x_0) \longrightarrow [0, \infty), g(x) > 0$ almost α *everywhere,* and a function $k \in L^1([t_0 - a, t_0), [0, \infty))$ such that for almost every $t \in [t_0 - a, t_0]$

$$
f(t,x)g(x) - f(t,y)g(y) \le k(t)\varphi\left(\int_{x_0}^x g(s) \, ds\right) \quad \text{whenever } x_0 - b < x < y < x_0,\tag{3.18}
$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and - *ε* $\frac{dz}{\varphi(z)} = +\infty$ for every $\varepsilon > 0$.

Then problem ([3.14](#page-8-0)) has at most one solution.

We can ensure conditions (2.6) and (3.15) at one stroke by means of a generalized two–sided Lipschitz condition. In this case we also include information about existence of solutions, which follows immediately from Peano's theorem.

Corollary 3.4. *For* $(t_0, x_0) \in \mathbb{R}^2$ *and positive numbers a and b, define*

$$
U = [t_0 - a, t_0 + a] \times [x_0 - b, x_0 + b],
$$

and let $f: U \longrightarrow \mathbb{R}$ *be a continuous function.*

Assume there exist a continuous function $g:(x_0-b,x_0+b) \longrightarrow [0,\infty), g(x)>0$ almost everywhere, and a function $k \in L^1((t_0 - a, t_0 + a), [0, \infty))$ such that for almost every $t \in [t_0 - a, t_0 + a]$ we have

$$
|f(t,y)g(y) - f(t,x)g(x)| \le k(t)\varphi\left(\int_x^y g(s)\,ds\right), \quad \text{whenever } x_0 - b < x < y < x_0 + b,\tag{3.19}
$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and - *ε* $\frac{dz}{\varphi(z)} = +\infty$ for every $\varepsilon > 0$.

Then the initial value problem [\(1.1](#page-0-0)) has a unique solution defined on some interval $(t_0 - \nu, t_0 + \nu)$, with $\nu > 0$.

Finally, we establish a multidimensional version of the previous result. Its proof follows similar ideas to that of Theorem [2.1](#page-2-0), but we include it for the sake of completeness.

Theorem 3.1. For $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$, $x_0 = (x_{0,1}, x_{0,2}, \ldots, x_{0,n})$, and positive numbers a and b, define

$$
U = [t_0 - a, t_0 + a] \times [x_{0,1} - b, x_{0,1} + b] \times \cdots \times [x_{0,n} - b, x_{0,n} + b],
$$

and let $f: U \longrightarrow \mathbb{R}^n$ *be a continuous function.*

Assume there exist continuous functions $g_i : (x_{0,i} - b, x_{0,i} + b) \longrightarrow [0, \infty), i = 1, ..., n$, with $g_i(x) > 0$ almost everywhere, and a function $k \in L^1((t_0-a,t_0+a),[0,\infty))$ such that for almost every t and all x, y $with (t, x), (t, y) \in U$ *we have*

$$
\sum_{i=1}^{n} |f_i(t, y)g_i(y_i) - f_i(t, x)g_i(x_i)| \le k(t) \varphi \left(\sum_{i=1}^{n} \left| \int_{x_i}^{y_i} g_i(s) \, ds \right| \right),\tag{3.20}
$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and - *ε* $\frac{dz}{\varphi(z)} = +\infty$ for every $\varepsilon > 0$.

Then the initial value problem

$$
x'(t) = f(t, x(t)), \quad x(t_0) = x_0,
$$
\n(3.21)

has a unique solution defined on some interval $(t_0 - \nu, t_0 + \nu)$ *, with* $\nu > 0$ *.*

Proof. Let us define the continuously differentiable function

$$
G(x) = G(x_1, \ldots, x_n) = \left(\int_{x_{0,1}}^{x_1} g_1(s) \, ds, \ldots, \int_{x_{0,n}}^{x_n} g_n(s) \, ds\right), \quad x_i \in (x_{0,i} - b, x_{0,i} + b), \quad i = 1, \ldots, n.
$$

Let us assume that *x* and *y* are two solutions of (3.21) such that $(t, x(t))$, $(t, y(t)) \in U$ for all $t \in [t_0, t_1]$. Denote by $\|\cdot\|$ the 1-norm on \mathbb{R}^n , i.e., $\|x\| = \sum_{i=1}^n |x_i|$.

For almost every $t \in [t_0, t_1]$, condition [\(3.20](#page-9-0)) yields

$$
||(G \circ y)'(t) - (G \circ x)'(t)|| = \sum_{i=1}^{n} |f_i(t, y(t))g_i(y_i(t)) - f_i(t, x(t))g_i(x_i(t))|
$$

$$
\leq k(t)\varphi\left(\sum_{i=1}^{n} \left| \int_{x_i(t)}^{y_i(t)} g_i(s) ds \right| \right).
$$

Finally, let us denote $u = ||G \circ y - G \circ x||$, and observe that

$$
0 \le u(t) \le \int_{t_0}^t k(s)\varphi(u(s)) ds \quad \text{for all } t \in [t_0, t_1].
$$

We deduce from Lemma [2.1](#page-2-0) that $u(t) = 0$ on $[t_0, t_1]$, which implies that $x = y$ on $[t_0, t_1]$. \Box

Remark 3.1. Observe that condition [\(3.20](#page-9-0)) with $g \equiv (1, \ldots, 1)$ reduces to Montel-Tonelli's condition, namely,

$$
|| f(t, y) - f(t, x)|| \leq k(t) \varphi (||y - x||),
$$

where $\|\cdot\|$ stands for the 1-norm on \mathbb{R}^n .

4. Uniqueness through reciprocal problems

Roughly speaking, when $f(t, x)$ is positive (or negative) then assumptions can be transferred to the time variable just by studying a reciprocal problem, see [\[2](#page-12-0),[3,5,8,](#page-12-0)[10,12](#page-13-0),[14\]](#page-13-0). Our next result is a somewhat sharper form of [[5,](#page-12-0) Theorem 2.1].

Theorem 4.1. *For* $(t_0, x_0) \in \mathbb{R}^2$ *and positive numbers a and b, define*

$$
U = (t_0, t_0 + a] \times [x_0 - b, x_0 + b].
$$

Let $f: U \longrightarrow \mathbb{R}$ *be a continuous function satisfying the following conditions:*

 (1) $f(t, x) \neq 0$ *whenever* $x \neq x_0$;

(2) $f(t, x_0)$ *is not identically zero on* $(t_0, t_0 + \varepsilon)$ *for* $0 < \varepsilon < a$ *.*

Then, either $f(t, x) > 0$ for all $(t, x) \in U$, or $f(t, x) \le 0$ for all $(t, x) \in U$, and if the reciprocal problem

$$
t'(x) = \frac{1}{f(t(x), x)}, \ x \neq x_0, \quad t(x_0) = t_0,
$$
\n(4.22)

has at most one solution defined on the right of x_0 (if $f \ge 0$) or on the left of x_0 (if $f \le 0$), then the initial *value problem* [\(2.4](#page-1-0)) *has at most one solution.*

Proof. We shall prove that all possible solutions of (1.1) (1.1) are strictly monotone and their inverses solve (4.22) on the same side of x_0 , thus proving that (1.1) (1.1) cannot have more than one solution.

First, observe that conditions (1) and (2) imply that *f* has constant sign on *U* (that is, either $f(t, x) \ge 0$ for all $(t, x) \in U$ or $f(t, x) \leq 0$ for all $(t, x) \in U$). To prove it, note that condition (2) ensures that $f(t_1, x_0) \neq 0$ for some $t_1 \in (t_0, t_0 + a)$. Now, fix an arbitrary point $(t, x) \in U$, $x \neq x_0$, which implies $f(t, x) \neq 0$ by condition (1). If $f(t_1, x_0) \cdot f(t, x) < 0$, then, by continuity of *f*, the segment with endpoints (t_1, x_0) and (t, x) contains a point (t_2, y) such that $f(t_2, y) = 0$, a contradiction with condition (1).

Now, if $x(t)$ is a solution of [\(1.1](#page-0-0)) on some interval $I = [t_0, t_0 + c]$, we either have $x'(t) \ge 0$ for all $t \in I$ or $x'(t) \leq 0$ for all $t \in I$, hence *x* is monotone on *I*. Let us prove that $x'(t) \neq 0$ for all $t \in I$, $t \neq t_0$. Reasoning by contradiction, assume that for some $t^* \in I$, $t^* \neq t_0$, we have $0 = x'(t^*) = f(t^*, x(t^*))$. Then we deduce from condition (1) that $x(t^*) = x_0$. Since *x* is monotone and $x(t_0) = x_0$, we deduce that *x* is constant between t_0 and t^* , hence $0 = x'(t) = f(t, x(t))$ for all $t \in (t_0, t^*)$, but this is impossible due to condition (2).

Summing up, *x* is strictly monotone on $I = [t_0, t_0 + c]$, with nonzero derivative everywhere on $(t_0, t_0 + c]$, and therefore its inverse function $t = x^{-1}$: $J = x(I) \longrightarrow I$ solves the reciprocal IVP (4.22), either on the right of x_0 (if f is nonnegative) or on the left of x_0 (if f is nonpositive). \Box

Plainly, imposing on (4.22) the assumptions of the results in the previous section, we obtain new uniqueness results for [\(2.4](#page-1-0)) *via* Theorem [4.1.](#page-10-0) As a sample, we include the following.

Corollary 4.1. *For* $(t_0, x_0) \in \mathbb{R}^2$ *and positive numbers a and b, define*

$$
U = (t_0, t_0 + a] \times [x_0, x_0 + b].
$$

Let $f: U \longrightarrow \mathbb{R}$ *be a continuous function satisfying the following three conditions:*

- *(1)* $f(t, x) > 0$ *whenever* $x > x_0$;
- *(2)* $f(t, x_0)$ *is not identically zero on any interval* $(t_0, t_0 + \varepsilon)$ *for* $0 < \varepsilon < a$ *;*
- (3) there exist a continuous and integrable function $g:(t_0,t_0+a) \longrightarrow [0,\infty)$, $g(t) > 0$ for a.e. t, and a function $k \in L^1((x_0, x_0 + b), [0, \infty))$ such that for almost every $x \in (x_0, x_0 + b)$ we have

$$
\frac{g(t)}{f(t,x)} - \frac{g(s)}{f(s,x)} \le k(x)\varphi\left(\int_s^t g(r) dr\right) \quad \text{whenever } t_0 < s < t < t_0 + a,\tag{4.23}
$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a nondecreasing function such that $\varphi(0) = 0$, $\varphi(z) > 0$ for $z > 0$, and - *ε* $\frac{dz}{\varphi(z)} = +\infty$ for every $\varepsilon > 0$.

Then the initial value problem [\(1.1](#page-0-0)) *has at most one solution.*

Proof. Since f is nonnegative, we need uniqueness of solution of (4.22) (4.22) on the right of x_0 , which follows from condition (3) and Theorem [2.2.](#page-5-0) \Box

Finally, we illustrate the applicability of Corollary [4.1.](#page-11-0)

Example 4.1. The singular initial value problem

$$
x' = f(t, x) = \frac{1}{\sqrt{t}} + \sqrt[3]{x^2}, \ t > 0, \ x(0) = 0,
$$
\n(4.24)

has at most one solution. Indeed, take $g(t) = 1/\sqrt{t}$, $t > 0$, and observe that for $0 < s < t$ and any $x \ge 0$, we have

$$
\frac{g(t)}{f(t,x)}-\frac{g(s)}{f(s,x)}=\frac{1}{1+\sqrt{t}\sqrt[3]{x^2}}-\frac{1}{1+\sqrt{s}\sqrt[3]{x^2}}\leq 0<\int\limits_s^t g(r)\,dr,
$$

so condition ([4.23\)](#page-11-0) in Corollary [4.1](#page-11-0) is satisfied with $k \equiv 1$ and $\varphi(z) = z$ for all $z > 0$.

In this case, we can also obtain information about the existence of solution to (4.24) through its reciprocal problem, namely,

$$
t' = \frac{\sqrt{t}}{1 + \sqrt{t}\sqrt[3]{x^2}}, \ x > 0, \ t(0) = 0.
$$
 (4.25)

Observe that (4.25) has a classical everywhere differentiable solution because the right–hand side in the ODE can be extended to a continuous function for all $(t, x) \in \mathbb{R}^2$, hence Peano's existence theorem applies. Now, the inverse of the classical solution of (4.25) is a solution of (4.24) in the sense of Definition [2.1.](#page-1-0)

The approach in this section is applicable with many other uniqueness conditions imposed on ([4.22\)](#page-11-0), such as those in $[1,6,11]$ $[1,6,11]$.

Acknowledgments

Rodrigo López Pouso and Jorge Rodríguez López were partially supported by grant ED431C 2019/02, Xunta de Galicia (Spain), and by Ministerio de Ciencia y Tecnología (Spain), grant PID2020-113275GB-I00.

References

- [1] R.P. Agarwal, V. [Lakshmikantham,](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib97282B278E5D51866F8E57204E4820E5s1) Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific [Publishing,](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib97282B278E5D51866F8E57204E4820E5s1) 1993.
- [2] J.Á. Cid, S. Heikkilä, R. López Pouso, [Uniqueness](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib59FCB956CA6369B0E24A225D7E26C795s1) and existence results for ordinary differential equations, J. Math. Anal. Appl. 316 (2006) [178–188.](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib59FCB956CA6369B0E24A225D7E26C795s1)
- [3] J.Á. Cid, R. López Pouso, On first order ordinary differential equations with [non-negative](http://refhub.elsevier.com/S0022-247X(22)00363-8/bibB980610CFAA9D05A321A87E4251DD80Cs1) right-hand sides, Nonlinear Anal. 52 (2003) [1961–1977.](http://refhub.elsevier.com/S0022-247X(22)00363-8/bibB980610CFAA9D05A321A87E4251DD80Cs1)
- [4] J.Á. Cid, R. López Pouso, Existence of unique solutions for perturbed [autonomous](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib8283E0404434129FE61FDE6B3E1E298Fs1) differential equations, J. Lond. Math. Soc. (2) 78 (2008) [798–812.](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib8283E0404434129FE61FDE6B3E1E298Fs1)
- [5] J.A. Cid, R. López Pouso, Does Lipschitz with respect to x imply [uniqueness](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib0A8EF5375F01B8D3DBC499B9ED80FEA6s1) for the differential equation $y' = f(x, y)$? Amer. Math. [Monthly](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib0A8EF5375F01B8D3DBC499B9ED80FEA6s1) 116 (2009) 61–66.
- [6] J.Á. Cid, R. López Pouso, A generalization of [Montel-Tonelli's](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib555B0DB7B4729A6AEB3F095127D7C725s1) uniqueness theorem, J. Math. Anal. Appl. 429 (2015) [1173–1177.](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib555B0DB7B4729A6AEB3F095127D7C725s1)
- [7] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, [McGraw-Hill,](http://refhub.elsevier.com/S0022-247X(22)00363-8/bibD4A385F3C30F761C6302A7C567A524E9s1) New York, 1955.
- [8] J. Diblík, C. Nowak, S. Siegmund, A general Lipschitz [uniqueness](http://refhub.elsevier.com/S0022-247X(22)00363-8/bibB3BF60B851EBAEB2768B01A32E2EF32Fs1) criterion for scalar ordinary differential equations, [Electron.](http://refhub.elsevier.com/S0022-247X(22)00363-8/bibB3BF60B851EBAEB2768B01A32E2EF32Fs1) J. Qual. Theory Differ. Equ. (2014) 34.
- [9] P. Hartman, Ordinary Differential Equations, reprint of the second edition, [Birkhäuser,](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib1BF22405CD48D61B10A809B80D4FF6E1s1) Boston, 1982.
- [10] J.T. Hoag, Existence and [uniqueness](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib2510C39011C5BE704182423E3A695E91s1) of a local solution for $x' = f(t, x)$ using inverse functions, Electron. J. Differ. Equ. 124 [\(2013\)](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib2510C39011C5BE704182423E3A695E91s1) 1–3.
- [11] R. López Pouso, J. [Rodríguez-López,](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib90A7C45EAFFBD575CA6FB361E6D170A4s1) Existence and uniqueness of solutions for systems of discontinuous differential equations under localized [Bressan–Shen](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib90A7C45EAFFBD575CA6FB361E6D170A4s1) transversality conditions, J. Math. Anal. Appl. 492 (1) (2020) 124425.
- [12] C. Mortici, On the [solvability](http://refhub.elsevier.com/S0022-247X(22)00363-8/bibF905D4359DEFB2D3D4CB588E74C93B2As1) of the Cauchy problem, Nieuw Arch. Wiskd. IV. Ser. 17 (1999) 21–23.
- [13] S. Siegmund, C. Nowak, J. Diblík, A generalized [Picard–Lindelöf](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib87CAB54248FB9116E9A0944967396EC6s1) theorem, Electron. J. Qual. Theory Differ. Equ. (2016) [28.](http://refhub.elsevier.com/S0022-247X(22)00363-8/bib87CAB54248FB9116E9A0944967396EC6s1)
- [14] H. Stettner, C. Nowak, Eine verallgemeinerte Lipschitzbedingung als [Eindeutigkeitskriterium](http://refhub.elsevier.com/S0022-247X(22)00363-8/bibAFBE94CDBE69A93EFABC9F1325FC7DFFs1) bei gewöhnlichen Differen[tialgleichungen](http://refhub.elsevier.com/S0022-247X(22)00363-8/bibAFBE94CDBE69A93EFABC9F1325FC7DFFs1) (A generalized Lipschitz condition as criterion of uniqueness in ordinary differential equations), Math. Nachr. 141 (1989) 33–35 (in [German\).](http://refhub.elsevier.com/S0022-247X(22)00363-8/bibAFBE94CDBE69A93EFABC9F1325FC7DFFs1)