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AN ABSTRACT AVERAGING METHOD WITH APPLICATIONS

TO DIFFERENTIAL EQUATIONS

JOSÉ ÁNGEL CID1, JEAN MAWHIN2 AND MIROS LAWA ZIMA∗3

Abstract. We present a general formulation of the averaging method in the

setting of a semilinear equation Lx = εN(x, ε), being L a linear Fredholm

mapping of index zero. Our general approach provides new results even in
the classical periodic framework. Among the applications we obtained there

are: a partial answer to an open problem related to the Liebau phenomenon,

the multiplicity of periodic solutions for a planar system with delay and the
existence of solution for a nonlocal chemical reactor.

1. Introduction

The averaging method is a fruitful technique in perturbation theory that goes
back to the classical works on celestial mechanics of Clairaut, Lagrange and Laplace
in the XVIIIthcentury. Through the XIXth century it progressed in the skillful
hands of renowned mathematicians, such as Jacobi and Poincaré, until its rigorous
formalization by Fatou in 1928, and its substantial development and application
to nonlinear mechanics in the 1930’s by the Kiev school of mathematics leaded by
Krylov, Bogoliubov, and Mitropolsky (see [23]).

As pointed out in [8, Chapter 4], there are many different averaging theorems,
whose main goal is to obtain information about a nonlinear system of differential
equations with a small parameter ε

x′ = εf(t, x, ε), where f is T -periodic in t, (1)

from the averaged autonomous system

x′ = εF (x), where F (x) = 1
T

∫ T

0

f(t, x, 0)dt. (2)

The information transferred from problem (2) to problem (1) can be mainly of
two types : asymptotics estimates for the solutions of initial value problems on a
large or infinite interval (see [23]), or the existence of T -periodic solutions for (1)
associated to a critical point of (2) (see [10, Chapter V, Theorem 3.2] or [27, Page
168]).

In this paper we focus on an abstract version of the second approach motivated
by the extension of a result given in [29] for a frictionless equation related to the
Liebau phenomenon to an equation containing a friction term. To reach this goal
we develop an averaging theorem for the existence of periodic solutions not covered
by the previous literature which in fact is a special case of a more general result

2020 MSC: 34C29, 34C25, 34B10, 47B30.

Keywords: averaging method, periodic solution, Liebau phenomenon, nonlocal boundary value
problem, system with delay.

Corresponding author: M. Zima.

1
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formulated in the framework of small nonlinear perturbations of Fredholm linear
mappings of index zero. Roughly speaking, while searching for T -periodic solutions
of equation (1) is equivalent to solve a semilinear equation of the type

Lx = εN(x, ε),

in some infinite dimensional space, with L a Fredholm operator of index zero, we
can take advantage of the fact that the critical points of (2) are solutions of a finite
dimensional system defined in some subset of Ker(L). Besides this our abstract for-
mulation extends the applicability of the averaging method from periodic solutions
to other kinds of boundary conditions.

The paper is organized as follows: in Section 2 we present our main averaging
theorem in an abstract setting. Section 3 is devoted to develop a periodic version
of our general averaging. Firstly, for ordinary differential equations, a result that is
even new up to our knowledge, and we present two applications: one to the Liebau
phenomenon and another one to a pendulum with oscillating support. Secondly,
we also deal with the periodic averaging for functional differential equations and we
derive the existence of multiple periodic solutions for a planar system with delay.
Finally, in Section 4 we develop an averaging method for a problem with nonlocal
and nonlinear boundary conditions. A special case with nonlocal linear boundary
conditions, which extends the Neumann ones, is analyzed in more detail and we
obtain as a consequence an application to a tubular chemical reactor.

2. The averaging method for abstract semilinear equations

2.1. Some algebraic preliminaries. For the convenience of the reader we collect
here some basic definitions and properties of Fredholm mappings. A more detailed
account can be found in the monographs [17, 18].

Let X and Z be real Banach spaces, Ω ⊂ X an open set, ε1 > 0, L : X → Z and
N : Ω× (−ε1, ε1)→ Z such that:

(H0) L is linear, continuous and Im(L) is closed in Z.
(H1) Ker(L) and Coker(L) = Z/Im(L) have the same finite dimension.
(H2) N is continuous in Ω × (−ε1, ε1) and, for each ε ∈ (−ε1, ε1), N(·, ε) is

Fréchet differentiable in Ω, and ∂N
∂x is continuous at (x0, 0).

A mapping L satisfying (H0) and (H1) is called a Fredholm mapping of index
zero. For such operators there exist continuous projectors (i.e., linear bounded and
idempotent operators) P : X → X and Q : Z → Z such that the sequence

X
P−→ X

L−→ Z
Q−→ Z

is exact, that is, Im(P ) = Ker(L) and Im(L) = Ker(Q). Then,

X = Ker(L)⊕Ker(P ) and Z = Im(L)⊕ Im(Q),

and the restriction

LP : Ker(P )→ Im(L)

is an isomorphism. So its algebraic inverse KP : Im(L)→ Ker(P ) is well defined.
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2.2. The averaging method. Let us consider the problem

Lx = εN(x, ε), x ∈ Ω, ε ∈ (−ε1, ε1), (3)

where L and N are as in the previous section. Let us define the averaged function

F : Ker(L) ∩ Ω→ Im(Q), x 7→ F (x) := Q(N(x, 0)).

Notice that Ker(L) has finite dimension, so the averaged equation

F (x) = 0, x ∈ Ker(L) ∩ Ω,

is finite dimensional. Moreover, F ∈ C1 and, for all x ∈ Ker(L) ∩ Ω,

F ′(x) = Q ◦ ∂N
∂x

(x, 0).

The following is our main result, an existence theorem for the abstract equation
(3) based on the averaging method.

Theorem 1. Under the assumptions (H0), (H1) and (H2), if there exists x0 ∈
Ker(L) such that

F (x0) = 0 and F ′(x0) is an isomorphism, (4)

then there exists ε0 ∈ [−ε1, ε1]\{0} such that, for 0 < |ε| < ε0, the problem (3) has
a unique solution x(t, ε) in a sufficiently small neighborhood of x0. Moreover

lim
ε→0
‖x(t, ε)− x0‖X = 0.

Proof. Let us define the nonlinear operator G : Ω× (−ε1, ε1)→ Z by

G(x, ε) = Lx− (1− ε)Q(N(x, ε))− εN(x, ε).

If

G(x, ε) = 0, (5)

then
0 = Q(G(x, ε)) = −Q(N(x, ε)),

and hence
Lx = εN(x, ε),

so that x is a solution of (3). Thus solutions of (5) give solutions of (3).

For ε = 0, problem (5) becomes

Lx = Q(N(x, 0))

and then x ∈ Ker(L) and F (x) := Q(N(x, 0)) = 0 (remember that Z = Im(L) ⊕
Im(Q)). Conversely, all zeros of F are solutions of G(x, 0) = 0.

Because G has the same regularity as N , to apply the implicit function theorem
in Banach spaces [30, Theorem 4.B] to equation (5) near (x0, 0), we must study
the invertibility of the partial derivative of G with respect to x at (x0, 0). For any
v ∈ Ω, we have

∂G

∂x
(x, ε)v = Lv − (1− ε)Q

(
∂N

∂x
(x, ε)v

)
− ε∂N

∂x
(x, ε)v.

and hence,

∂G

∂x
(x0, 0)v = Lv −Q

(
∂N

∂x
(x0, 0)v

)
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For any v ∈ X, let us write v = v̂ + ṽ, where v̂ ∈ Ker(L) and ṽ ∈ Ker(P ).

Analogously, for any h ∈ Z, let us write h = ĥ+h̃, where ĥ ∈ Im(Q) and h̃ ∈ Im(L).
For h ∈ Z, the equation

∂G

∂x
(x0, 0)v = h, v ∈ X, (6)

is equivalent to

Lv −Q
(
∂N

∂x
(x0, 0)v

)
= h, v ∈ X,

that is,

Lv̂ + Lṽ −Q
(
∂N

∂x
(x0, 0)v

)
= ĥ+ h̃.

Clearly, Lv̂ = 0, and since Z = Im(L)⊕ Im(Q) we obtain the equivalent Lyapunov-
Schmidt system

−Q
(
∂N

∂x
(x0, 0)v

)
= ĥ, (7)

Lṽ = h̃. (8)

As noted in Section 2.1 we know that L is an isomorphism from Ker(P ) to Im(L),

and hence the bifurcation equation (8) has a unique solution ṽ = KP h̃ in Ker(P ),
which, introduced in the equation (7), gives

Q

(
∂N

∂x
(x0, 0)v̂

)
= −ĥ−Q

(
∂N

∂x
(x0, 0)ṽ

)
,

i.e.

F ′(x0)v̂ = −ĥ−Q
(
∂N

∂x
(x0, 0)ṽ

)
.

Therefore, if x0 is such that F ′(x0) is an isomorphism, the problem (6) has a
unique solution v ∈ X for each h ∈ Z, and the conditions of the implicit function
theorem in Banach spaces are satisfied at (x0, 0). The conclusion follows from this
theorem. �

Remark 2. Recently some papers have dealt with the existence of periodic so-
lutions for problems with a small parameter by means of degree theory, see for
instance [2, 14]. This type of results combining the averaging method with degree
theory can be traced back at least to Cronin’s monograph [6] (see also [19] for a
historical account) and an abstract formulation in the setting of small perturba-
tions of linear index zero Fredholm mappings can be found in [7, Theorem IV.II]:
typically, instead of condition (4) it is asked that

dB [F,D, 0] 6= 0, (9)

where D is a bounded open subset of Rn such that 0 6∈ F (∂D) and dB is the
Brouwer degree. This condition implies in particular the existence of x0 ∈ D such
that F (x0) = 0. On the other hand, (4) implies that x0 is an isolated zero of F
and that, for D a sufficiently small open neighborhood of x0,

dB [F,D, 0] = sign (det (F ′(x0))) 6= 0.
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Of course, what is lost with the degree condition (9) is the local uniqueness of the
periodic solution x(t, ε) and hence the fact that x(t, ε) → x0 when ε → 0. Such
information can be critical in some applications, as for instance in [28, 29] where
the averaging method was combined with the third order approximation to obtain
stability information about the periodic solutions. It is worth noting that the idea
of transforming a problem of finding periodic solutions of x′ = εf(t, x, ε) in terms of
semilinear equations of the type Lx = εN(x, ε) like in Theorem 1 has a long history,
and is for example emphasized in Chapter IX of [10], in [16], and, more recently
in Section 4 of the interesting paper [2], where coincidence degree techniques are
used under more general assumptions which exclude local uniqueness conclusions
and an iteration method for the obtained T -periodic solution.

Remark 3. The proof of the implicit function theorem for equation G(x, ε) = 0
when G(x0, 0) = 0 [30, Theorem 4.B] consists in defining the operator H : X ×
(−ε1, ε1)→ X by

H(x, ε) = x−
[
∂G

∂x
(x0, 0)

]−1

G(x, ε)

(such that the fixed points of H(·, ε) are the zeros of G(·, ε)) and proving that H(·, ε)
is a contraction mapping of the closed ball Bx0

(δ0) into itself for each ε ∈ (−ε0, ε0),
when δ0 and ε0 are sufficiently small. The Banach fixed point theorem implies
then the existence of a unique fixed point x(ε) of H(·, ε) in Bx0

(δ0). Furthermore,
limε→0 x(ε) = x0 and x(ε) = limk→∞ xk(ε), where x0(ε) = x0 and, for each k =
0, 1, . . .,

xk+1(ε) = xk(ε)−
[
∂G

∂x
(x0, 0)

]−1

G(xk(ε), ε).

This iteration can easily be written in terms of the original mappings L and N .

3. Applications to periodic solutions

Throughout this section we are going to use the following notation: for a given
continuous function h : [0, T ]→ R we denote by h̄ its mean value, that is,

h̄ =
1

T

∫ T

0

h(s)ds.

3.1. Periodic averaging for ordinary differential equations. Let n ≥ 1 be
an integer, T > 0, I ⊂ R an open interval and

f : [0, T ]× I × R× . . .× R× (−ε1, ε1) → R,
(t, u0, u1, . . . , un−1, ε) 7→ f(t, u0, u1, . . . , un−1, ε)

be continuous and such that, for each k = 0, . . . , n−1,
∂f

∂uk
exists and is continuous.

Given a1, a2, . . . , an−1 in R, let us consider the problem

x(n) +
n−1∑
j=1

an−jx
(n−j) = εf(t, x, x′, . . . , x(n−1), ε),

x(j)(0) = x(j)(T ) (j = 0, . . . , n− 1), (10)
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and define the periodic averaged function

F : I → R, c 7→ F (c) :=
1

T

∫ T

0

f(s, c, 0, . . . , 0, 0) ds. (11)

Then F ∈ C1(I,R) and, for all c ∈ I

F ′(c) =
1

T

∫ T

0

∂f

∂u0
(s, c, 0, . . . , 0, 0) ds.

The following result generalizes the classical periodic averaging method, [9], even
for second order equations.

Theorem 4. Assume that the linear problem

x(n) +
n−1∑
j=1

an−jx
(n−j) = 0, x(j)(0) = x(j)(T ), j = 0, . . . , n− 1,

has only constant solutions.
Then, for each c0 ∈ I such that

F (c0) = 0 and F ′(c0) 6= 0,

where F is given by (11), there exists ε0 ∈ [−ε1, ε1]\{0} such that, for 0 < |ε| < ε0,
the problem (10) has a unique solution x(t, ε) such that lim

ε→0
x(t, ε) = c0 uniformly

in t ∈ [0, T ].

Proof. Let X = CnT [0, T ] be the subspace of elements of Cn[0, T ] such that x(j)(0) =

x(j)(T ) (j = 0, . . . , n− 1), Z = C[0, T ],

Lx = x(n) +
n−1∑
j=1

an−jx
(n−j),

and

N(x, ε) = f(t, x, x′, . . . , x(n−1), ε).

L is a Fredholm mapping of index zero as a special case of [7, Proposition IX.2,
p. 171-172] but we explicit the details for the reader’s convenience: by Proposition
IX.1 in [7] the assumption upon L implies that, with ω := 2π

T ,

(imω)n +
n−1∑
j=1

an−j(imω)n−j 6= 0 for any integer m 6= 0. (12)

The adjoint operator L∗ of L, such that 〈Lu, v〉 = 〈u, L∗v〉, where 〈x, y〉 :=∫ T

0

x(t)y(t) dt, is defined by

L∗u = (−1)nu(n) +
n−1∑
j=1

(−1)n−jan−ju
(n−j).

Clearly,

(−1)n(imω)n +
n−1∑
j=1

(−1)n−jan−j(imω)n−j 6= 0 for any integer m 6= 0
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if and only if condition (12) holds, as immediately seen by replacing m by −m

in (12). Consequently, defining the projectors Px =
1

T

∫ T

0

x(s)ds for x ∈ X and

Qz =
1

T

∫ T

0

z(s)ds for z ∈ Z, we have that

Ker(L∗) = Ker(L) = Im(P ),

and using the Fredholm alternative for the forced linear problem (see e.g. Proposi-
tion IX.1 in [7]), we obtain

Im(L) = Ker(Q).

Hence the sequence

CnT [0, T ]
P−→ CnT [0, T ]

L−→ C[0, T ]
Q−→ C[0, T ],

is exact and all the assumptions of Theorem 1 are satisfied. �

Remark 5. An alternative to the above proof, which is less elementary but does
not request the Fredholm alternative for linear periodic problems, is based upon
the following result of the theory of Fredholm operators (see e.g. [1, Corollary 28Q]
or [30, Proposition 8.14 (3)]) : If X and Z are Banach spaces, A : X → Z is a
Fredholm mapping of index zero and B : X → Z is a compact linear operator, then
A + B is a Fredholm mapping of index zero. With the notations of Theorem 4,
define

A : CnT [0, T ]→ C[0, T ], x 7→ x(n),

and

B : CnT [0, T ]→ C[0, T ], x 7→
n−1∑
j=1

an−jx
(n−j).

Using Ascoli-Arzelá’s theorem, it is easy to show that B is compact. On the other
hand, it is immediately checked that Ker(A) = Im(P ) and Im(A) = Ker(Q), be-

cause if h ∈ C[0, T ] is such that

∫ T

0

h(t) dt = 0, the solutions of the periodic

problem

x(n)(t) = h(t), x(j)(0) = x(j)(T ), j = 0, . . . , n− 1,

are given by x(t) = Px + (Knh)(t), where K is the operator which associates to
any T -periodic function with mean value zero its T -periodic primitive with mean
value zero, namely

(Kh)(t) =

∫ t

0

h(s) ds− 1

T

∫ T

0

[∫ τ

0

h(s) ds

]
dτ.

Hence, L = A + B is a Fredholm mapping of index zero with dim Ker(L) =
codim Im(L) = 1, and as, trivially, Im(L) ⊂ Ker(Q) and codim Ker(Q) = 1, we
have Im(L) = Ker(Q).

Remark 6. For the n-th order equation with a small parameter

x(n) = εf(t, x, ε),

and periodic boundary conditions

x(j)(0) = x(j)(T ), j = 0, . . . , n− 1,
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an existence theorem based on the averaging method can be found in [9, Pages
105–106]. Moreover [22, Corollary 2.5] provides a convergent method of successive
approximations for the solution x(t, ε) of the first order equation

x′ = εf(t, x, ε),

subject to x(0) = x(T ). The case of first order systems can be found for instance
in [10, 17]. However, as far as we know, Theorem 4 is new in the related literature,
giving existence, asymptotic behavior and an iteration method for the solution from
a simpler proof and in a more general setting. An anonymous referee of this paper
pointed out that the existence and asymptotic behavior part of the result could
also be obtained from the more general version of the averaging method recently
given by Llibre and Novaes in [15] for problems of the form

x′ = F0(t, x) + εF1(t, x) +O(ε2),

by reducing the scalar nth order differential equation in problem (10) to a first
order system in Rn in the standard way x = x1, x

′ = x2, . . . , x
(n−1) = xn, and

calling F0(t, x1, . . . , xn−1, xn) the part of the right-hand member independent of ε
and depending upon the aj . Of course, the main achievement of the results of [15]
lies more in its capacity in treating perturbations of order ε of nonlinear differential
systems.

3.1.1. Application to the Liebau phenomenon. The valveless pumping effect refers
to a preferential direction of a fluid without the aid of valves due to an asymmetric
periodic excitation. This effect is also called the Liebau phenomenon, since the
German cardiologist G. Liebau conjectured that breathing could explain the unex-
pected effectiveness of blood circulation on the human beings, [13]. A model which
exhibits the pumping effect, based on a simple configuration of one pipe and one
tank, was developed in [20]. The reader is also referred to [26, Chapter 8] for a
detailed account of the model: the problem reduces to searching positive T -periodic
solutions for the singular second-order differential equation

u′′ + a u′ =
1

u
(e(t)− bu′2)− c, (13)

where a ≥ 0, b > 1, c > 0 and e is continuous andT -periodic. Recently, some results
on the existence and stability of periodic positive solutions for (13) were presented
in [3, 4, 5, 12, 26, 29]. As pointed out in [3], ē > 0 is a necessary condition for the
existence of a periodic positive solution of (13), and an open problem is to know if
it is also sufficient. As a consequence of Theorem 4 we will give a partial answer to
this question.

By means of the change of variables u = xκ with κ = 1/(b+ 1), see [3], problem
(13) can be rewritten as

x′′ + a x′ =
e(t)

κ
x1−2κ − c

κ
x1−κ. (14)

Notice that if we consider c as a small parameter, meaning that the section of the
pipe is much smaller than the section of the tank, the equation (14) is of the form

x′′ + ax′ = r(t)xα − εs(t)xβ , (15)

where a, α, β ∈ R and r and s are T -periodic continuous functions. The following
result extends [28, Theorem 2.1].
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Theorem 7. Assume that a ∈ R, α 6= 1, α 6= β and r and s are T -periodic
continuous functions with r̄ · s̄ > 0. Then equation (15) has a T -periodic solution
x(t, ε) provided that:

(i) Either
1− α
β − α

> 0 and ε > 0 is small enough,

(ii) or
1− α
β − α

< 0 and ε > 0 is large enough.

Moreover, the following asymptotic behavior holds in both cases

lim
ε→0+

ε
1

β−αx(t, ε) =

(
r

s

) 1
β−α

uniformly in t ∈ [0, T ].

Proof. Setting x = µ
1

α−1 v, equation (15) becomes, after simplification by µ
1

α−1 ,

v′′ + av′ = r(t)µvα − εs(t)µ
β−1
α−1 vβ ,

and hence, choosing ε = µ
β−α
1−α , we have

v′′ + av′ = µ(r(t)vα − s(t)vβ). (16)

Now, it is easy to show that equation (16) satisfies the conditions of Theorem 4.
Indeed, for any c > 0 we have

F (c) = rcα − scβ and F ′(c) = αrcα−1 − βscβ−1,

and then for c0 =

(
r

s

) 1
β−α

> 0 it holds

F (c0) = 0 and F ′(c0) = (α− β)
r
β−1
β−α

s
α−1
β−α
6= 0.

�

Now, as an application of Theorem 7 to equation (13), through equation (14),
we obtain the following extension of [29, Theorem 2.1 (I)] which partially answers
the open problem stated above.

Corollary 8. Let us assume ē > 0. Then there exists c0 > 0 such that, for
0 < c < c0, problem (13) has a unique T -periodic solution u(t, c) such that

lim
c→0+

c u(t, c) = e uniformly in t ∈ [0, T ].

3.1.2. A pendulum with oscillating support. Consider a pendulum attached to a
moving cart as in [25, Section 5.1]. The angle x(t) of the pendulum satisfies the
following differential equation

x′′ + ax′ =
1

`
(−g sinx− p′′(t) cosx), (17)

where a > 0 is a viscous friction coefficient, ` > 0 is the length of the pendulum,
g is the gravitational acceleration and the function p ∈ C2(R), with p′′ T -periodic,
describes the motion of the cart. Let us set ε = 1

` in equation (17). Then, for c ∈ R
we have

F (c) = −g sin c− p′′ cos c and F ′(c) = −g cos c+ p′′ sin c.

Observe that F (c) = 0 when tan c = −p′′g , and then F ′(c) 6= 0. So, as consequence

of Theorem 4, we obtain the following existence result.
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Theorem 9. There exists `0 > 0 such that for ` > `0 equation (17) has a unique
T-periodic solution x(t, `) and

lim
`→+∞

x(t, `) = c0 uniformly in t ∈ [0, T ],

where c0 is the unique solution of the equation tan c0 = −p′′g .

3.2. Periodic averaging for functional differential equations. Consider now
the periodic boundary value problem for the functional differential equation

x′(t) = εf(t, xt, ε) for all t ∈ [0, 1], x(0) = x(1), (18)

where for x ∈ C([−r, 1],Rn), r ≥ 0, and t ∈ [0, 1], we define

xt(s) := x(s+ t) for all s ∈ [−r, 0],

and f : [0, 1]×C([−r, 0],Rn)× (−ε1, ε1)→ Rn, (t, ϕ, ε) 7→ f(t, ϕ, ε), is continuous,
∂f

∂ϕ
exists and is continuous and f(·, ϕ, ε) is 1-periodic.

Let X = {x ∈ C1(R,Rn) : x(t) = x(t+ 1) for all t ∈ R}, Z = C([0, 1],Rn) and

L : X → Z, x 7→ Lx = x′|[0,1],

N : X × (−ε1, ε1)→ Z, (x, ε) 7→ N(x, ε) = f(·, x·, ε),

so that problem (18) is equivalent to the abstract equation Lx = εN(x, ε).
Now, it is easy to show that L is a Fredholm mapping of index zero, and, the

averaged function for problem (18) is given by

F (c) :=

∫ 1

0

f(s, c, 0) ds, c ∈ Rn. (19)

Hence, as a direct consequence of Theorem 1 we obtain the following result.

Theorem 10. For each c0 ∈ Rn such that

F (c0) = 0 and F ′(c0) is invertible,

where F is given by (19), there exists ε0 > 0 such that, for 0 < |ε| < ε0, the problem
(18) has a unique solution x(t, ε) such that lim

ε→0
x(t, ε) = c0 uniformly in t ∈ [0, 1].

3.2.1. A periodic planar delay-differential system. As an example of application,
we can consider the following planar delay-differential system (written in complex
notations by letting z = x1 + ix2)

z′(t) = ε [zm(t− r)− h(t)] , z(0) = z(1), (20)

where m ≥ 1 is an integer, r ≥ 0 and h : R→ C is continuous and 1-periodic. It is
a special case of (18) with n = 2 and

f(t, ϕ, ε) = ϕm(−r)− h(t).

Consequently, with c0 ∈ C,

F (c0) :=

∫ 1

0

[cm0 − h(t)] dt = cm0 − h, (21)
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and

det F ′(c0) = det

(
<(mcm−1

0 ) <(imcm−1
0 )

=(mcm−1
0 ) =(imcm−1

0 )

)
= m2det

(
<(cm−1

0 ) −=(cm−1
0 )

=(cm−1
0 ) <(cm−1

0 )

)
= m2

(
(<(cm−1

0 ))2 + (=(cm−1
0 ))2

)
= m2|cm−1

0 |2 = m2|c0|2m−2. (22)

Corollary 11. If h := |h| exp(iθ) 6= 0 then there exists ε∗ > 0 such that for
0 < |ε| < ε∗ the problem (20) has at least m solutions z(j)(t, ε) and

z(j)(t, ε)→ |h| 1m exp

(
i
θ + 2jπ

m

)
uniformly in t ∈ [0, 1], j = 0, 1, . . . ,m− 1.

Proof. Since h := |h| exp(iθ) 6= 0, the m zeros of F in (21) are given by

c
(j)
0 = |h| 1m exp

(
i
θ + 2jπ

m

)
, j = 0, 1, . . . ,m− 1,

and by (22) are such that

det F ′(c
(j)
0 ) = m2|c(j)0 |2m−2 = m2|h|

2m−2
m 6= 0, j = 0, 1, . . . ,m− 1.

Applying Theorem 10 to each of the c
(j)
0 and calling ε∗ the smallest of the ε0

associated to each of them by Theorem 10, we obtain the result. �

4. Applications to nonlocal boundary value problems

4.1. Problems with nonlinear nonlocal boundary conditions. Consider now
the following problem for a ∈ R, a 6= 0, with nonlocal and nonlinear boundary
conditions

x′′ + ax′ = εf(t, x, x′, ε), Λ[x] = εC[x, ε], Θ[x] = εD[x, ε], (23)

where f : [0, 1]×R2×(−ε1, ε1)→ R, (t, u0, u1, ε) 7→ f(t, u0, u1, ε) is continuous and

such that, for k = 0, 1, ∂f
∂uk

exists and is continuous, Λ, Θ are linear continuous func-

tionals on C2([0, 1]) and C, D are continuous functionals on C2([0, 1]) × (−ε1, ε1)
such that C[·, ε], D[·, ε] are of class C1 on C2([0, 1]).

Let X = C2([0, 1]), Z = C([0, 1])× R2,

L : X → Z, x 7→ Lx := (x′′ + ax′,Λ[x],Θ[x]),

and

N : X × (−ε1, ε1)→ Z, (x, ε) 7→ N(x, ε) := (f(·, x(·), x′(·), ε), C[x, ε], D[x, ε]),

so that problem (23) is equivalent to the abstract equation Lx = εN(x, ε).
Now, let us define γ(t) = 1 and δ(t) = e−at for all t ∈ [0, 1] and assume conditions

Λ[γ] = Θ[γ] = 0, (24)

and

Λ[δ] 6= 0 and Θ[δ] 6= 0. (25)

Then it is clear that

Ker(L) = {x ∈ X : x is constant on [0, 1]}.
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On the other hand, the general solution of the equation x′′ + ax′ = h(t) is given
by

x(t) = c1γ(t) + c2δ(t) + xp(t) where xp(t) :=

∫ t

0

1

a
(1− ea(s−t))h(s)ds.

Then, the associated linear non-homogeneous problem, with h ∈ C([0, 1]), c, d ∈
R, is

x′′ + ax′ = h(t), Λ[x] = c, Θ[x] = d, (26)

which is equivalent, in view of (24), to the existence of c2 ∈ R such that

c2Λ[δ] + Λ[xp] = c, c2Θ[δ] + Θ[xp] = d. (27)

It follows now from (25) and (27) that (26) is solvable if and only if

Λ[δ]d = Θ[δ]c+ Λ[δ]Θ[xp]−Θ[δ]Λ[xp],

so that L is a Fredholm mapping of index zero, and, for any projector Q : Z → Z
such that Im(L) = Ker(Q), the equation Q(N(c0, 0)) = 0 with c0 ∈ R is equivalent
to

F (c0) := Θ[δ]C[c0, 0]− Λ[δ]D[c0, 0] + Λ[δ]Θ [σ]−Θ[δ]Λ [σ] = 0, (28)

where

σ(t) :=

∫ t

0

1

a
(1− ea(s−t))f(s, c0, 0, 0)ds.

Hence, as a direct consequence of Theorem 1 we obtain the following result.

Theorem 12. For each c0 ∈ R such that

F (c0) = 0 and F ′(c0) 6= 0,

where F is given by (28), there exists ε0 ∈ (0, ε1] such that, for 0 < |ε| < ε0, the
problem (23) has a unique solution x(t, ε) such that lim

ε→0
x(t, ε) = c0 uniformly in

t ∈ [0, 1].

4.2. Problems with linear nonlocal boundary conditions. Consider now for
a ∈ R, a 6= 0, the problem

x′′ + ax′ = εf(t, x, x′, ε), x′(0) = α[x], x′(1) = β[x], (29)

where α, β are continuous linear functionals given by the Riemann-Stieltjes integrals

α[x] =

∫ 1

0

x(s) dA(s), β[x] =

∫ 1

0

x(s) dB(s),

with the functions A, B : [0, 1] → R of bounded variation. The problem (29) with
a = 0 has been studied recently in [24]. Note that (29) is a particular instance
of problem (23) setting Λ[x] = x′(0) − α[x], Θ[x] = x′(1) − β[x], C[x, ε] ≡ 0 and
D[x, ε] ≡ 0.

Assume that

f : [0, 1]× R2 × (−ε1, ε1)→ R, (t, u0, u1, ε) 7→ f(t, u0, u1, ε),

is continuous and such that, for k = 0, 1, ∂f
∂uk

exists and is continuous, and moreover

α[γ] = β[γ] = 0, (30)
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and

α[δ] + a 6= 0 and β[δ] + ae−a 6= 0. (31)

Clearly, (30) and (31) are the equivalent to conditions (24) and (25). Notice also
that (30) implies that problem (29) is at resonance, that is, the associated linear
problem

x′′ + ax′ = 0, x′(0) = α[x], x′(1) = β[x],

admits nontrivial solutions.
Let us introduce the notation:

k(t, s) =

{
1

a
(1− ea(s−t)), 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1,

KA(s) =

∫ 1

0

k(t, s) dA(t), KB(s) =

∫ 1

0

k(t, s) dB(t),

and

η(s) =
KA(s)

α[δ] + a
− KB(s)− ea(s−1)

β[δ] + ae−a
. (32)

Then the averaged function given by (28) is (up to a multiplicative constant
different from zero)

F : R→ R, c 7→ F (c) :=

∫ 1

0

η(s)f(s, c, 0, 0) ds. (33)

Then F ∈ C1(R,R) and, for all c ∈ R,

F ′(c) =

∫ 1

0

η(s)
∂f

∂x
(s, c, 0, 0) ds.

Hence, as a direct consequence of Theorem 1 we obtain the following result.

Theorem 13. Assume that (30) and (31) hold. Then, for each c0 ∈ R such that

F (c0) = 0 and F ′(c0) 6= 0,

where F is given by (33), there exists ε0 ∈ (0, ε1] such that, for 0 < |ε| < ε0, the
problem (29) has a unique solution x(t, ε) such that lim

ε→0
x(t, ε) = c0 uniformly in

t ∈ [0, 1].

4.2.1. An application to a tubular chemical reactor. Given α1 and α2 linear contin-
uous functionals on C([0, 1]) let us consider the nonlocal boundary value problem

x′′ − λx′ = −µλ(b(t)− x)ex, x′(0) = λx(0) + α1[x], x′(1) = α2[x], (34)

where λ > 0 is the Peclet number, µ > 0 is the Damkohler number and b : [0, 1]→
(0,+∞) is a continuous function representing the dimensionless adiabatic temper-
ature rise. Problem (34) models the steady states of a chemical reactor in a tube of
unitary length being x(t) the temperature at a distance t along the tube, see [11].

Setting

α[x] := λx(0) + α1[x] and β[x] := α2[x],
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since they are linear continuous functionals on C([0, 1]), it follows from the Riesz
representation theorem, [21], the existence of A and B, functions of bounded vari-
ation, such that α and β can be expressed as the Riemann-Stieltjes integrals

α[x] =

∫ 1

0

x(s)dA(s) and β[x] =

∫ 1

0

x(s)dB(s).

So, problem (34) is a particular case of (29). By considering the Damkohler number
µ as a small parameter we obtain the following result.

Corollary 14. Let us assume that α1 and α2 satisfy

α1[γ] + λ = α2[γ] = 0, (35)

and

α1[δ] 6= 0 and α2[δ]− λeλ 6= 0, (36)

where γ(t) = 1 and δ(t) = eλt and moreover that∫ 1

0

η(s)ds 6= 0, (37)

where η is given by (32).
Then there exists µ0 > 0 such that for 0 < µ < µ0 there is a unique solution

x(t, µ) of problem (34) and

lim
µ→0+

x(t, µ) =
1∫ 1

0
η(s) ds

∫ 1

0

η(s)b(s) ds uniformly in t ∈ [0, 1].

Proof. It is clear that assumptions (35) and (36) are equivalent to conditions (30)
and (31). On the other hand, the averaged function F corresponding to problem
(34), as given by (33), is

F (c) =

∫ 1

0

η(s)λ(b(s)− c)ec ds.

Then, it its easy to show that for c0 =
1∫ 1

0
η(s) ds

∫ 1

0

η(s)b(s) ds we have

F (c0) = 0 and F ′(c0) = −λec0
(∫ 1

0

η(s) ds

)
6= 0.

Therefore the result follows from Theorem 13. �

Remark 15. Let τ(t) = t. A direct computation shows that∫ 1

0

η(s)ds =
1− α1[τ ]

λα1[δ]
− 1− α2[τ ]

λ(α2[δ]− λeλ)
,

so condition (37) is satisfied for instance if α1[τ ] = 1 andα2[τ ] 6= 1 or viceversa.

Remark 16. In [11] the authors deal with the existence and localization of positive
solutions of (34). It follows from Corollary 14, that if

c0 =
1∫ 1

0
η(s) ds

∫ 1

0

η(s)b(s) ds > 0

then (34) has a unique positive solution provided µ is small enough.
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