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1 INTRODUCTION.

Of course, the answer to the question posed in the title is no, in general, but,
surprisingly enough, yes in a significant situation to be detailed later.

This paper aims to bring to the attention of the widest possible mathe-
matical audience an elementary result, based on the theorem of differentiation
of inverse functions, which extends the applicability of uniqueness theorems.
Loosely speaking, it transforms every uniqueness theorem into an alternative
version of it with the roles of the dependent and the independent variables in-
terchanged in the assumptions. A remarkable example of such a theorem is the
version of Lipschitz’s theorem alluded to in the first paragraph, but there are
at least as many new possibilities as old uniqueness theorems.

Next we introduce some notation to discuss properly the question considered.
Let N be a neighborhood of a point (x0, y0) ∈ R2, f : N → R a given mapping,
and consider the scalar initial value problem

y′ = f(x, y), y(x0) = y0. (1.1)

We recall that a solution of (1.1) is a function Y : I → R which is continuously
differentiable on the interval I such that x0 ∈ I, Y (x0) = y0, and for all x ∈ I
we have (x, Y (x)) ∈ N and Y ′(x) = f(x, Y (x)). As usual, we say that (1.1)
has a unique solution if there exists α > 0 with the property that (1.1) has one
solution defined on [x0 − α, x0 + α] and any other solution Y : I → R coincides
with it on I ∩ [x0 − α, x0 + α].

Here and henceforth, we assume that f is continuous on N ; thus Peano’s
theorem guarantees that there exists ε > 0 such that (1.1) has at least one
solution defined on the interval [x0 − ε, x0 + ε].

The scalar version of Peano’s theorem was published in 1886, see [11], and
was extended to systems in 1890, see [12]1. At that time Peano was already

1Peano wrote that paper using his own logical symbols, which makes it rather difficult to
read. Three years later, G. Mie wrote in German a more understandable version of it, see [8].
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aware of the fact that some continuous functions f allow (1.1) to have more
than one solution. He presented the following example in [12]:

Example 1.1. The problem (1.1) for f(x, y) = 3y2/3 and x0 = 0 = y0 has more
than one solution. Indeed, one can check by direct computation that Y1(x) = 0
and Y2(x) = x3 are both solutions defined on the whole real line.

Lavrentieff constructed a more dramatic example in 1925, which consisted
in a continuous function on a rectangle such that uniqueness fails for (1.1) at
every initial condition (x0, y0) in the rectangle’s interior, see [6]. Later, in 1963,
Hartman published in this Monthly a simpler example of that type with a
function defined on the whole plane, see [5].

The main usefulness of differential equations is that they serve as models
that describe mathematically many real phenomena and processes. Especially
in those cases the existence of more than one solution is disturbing and mis-
leading, because it produces uncertainty about the behavior of the object that
we are studying. Moreover, uniqueness and nonuniqueness also have a number
of theoretical implications as, for example, in the study of the qualitative be-
havior at infinity of global solutions, see [13]. Therefore it is of fundamental
importance to have adequate tools to decide whether a concrete problem has a
unique solution.

Almost every textbook on ordinary differential equations contains a version
of the well-known uniqueness theorem published by Lipschitz in 1877, see [7]
and, for instance, the monographs [4, 14]. The following suffices for our purposes
in this article:

Theorem 1.1 (Lipschitz’s uniqueness theorem). Let N be a neighborhood of a
point (x0, y0) ∈ R2 and let f : N → R be continuous on N .

If f satisfies a Lipschitz condition with respect to the second variable on N ,
i.e.,

∃ L > 0 such that (x, y), (x, z) ∈ N ⇒ |f(x, y)− f(x, z)| ≤ L|y − z|, (1.2)

then (1.1) has a unique solution.

Now, does a Lipschitz condition with respect to the first variable imply
uniqueness for (1.1)? Example 1.1 shows that this is not true in general, and
this is often the end of the question, but we urge the reader to go through
the remaining few pages to find out that the answer to our question is positive
provided that f(x0, y0) 6= 0.

2 DOUBLE THE UNIQUENESS THEOREMS
THAT YOU KNOW (WITH LITTLE EFFORT!).

We begin this section with the following simple technical remark: if N ′ ⊂ N is
another neighborhood of (x0, y0) and the problem

y′ = f|N ′(x, y), y(x0) = y0
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has a unique solution, then (1.1) has a unique solution (here, f|N ′ stands for
the restriction of f to N ′). This observation guarantees that we can pass, with-
out losing generality, to more convenient smaller neighborhoods when studying
uniqueness. In doing so, we avoid some technicalities in the proofs.

The next theorem is the core of the present article and establishes the equiv-
alence between uniqueness for (1.1) and uniqueness for a related reciprocal prob-
lem, thus doubling the applicability of uniqueness theorems.

Theorem 2.1. Let N be a neighborhood of a point (x0, y0) ∈ R2 and let f :
N → R be continuous on N .

If f(x0, y0) 6= 0 then (1.1) has a unique solution if and only if the problem

x′ =
1

f(x, y)
, x(y0) = x0 (2.3)

has a unique solution.

Proof. Since f(x0, y0) 6= 0 and f is continuous at (x0, y0), there exists a neigh-
borhood of (x0, y0) where f has constant sign and is bounded. For simplicity,
we assume that f and 1/f have constant sign and are bounded on N .

To establish the result we will use the following claim, which is interesting
in its own right:
Claim. If Y is a solution of (1.1) then Y −1 is a solution of (2.3) and, con-
versely, if X is a solution of (2.3) then X−1 is a solution of (1.1).

Let Y : I → R be a solution of (1.1); for all x ∈ I we have (x, Y (x)) ∈ N and
Y ′(x) = f(x, Y (x)), so Y ′ has constant sign on I and, in particular, it has an
inverse Y −1 : Y (I) → R. Let us show that X = Y −1 solves (2.3). First, Y (I)
is an interval that contains y0 and X(y0) = x0; second, we use the theorem of
differentiation of inverse functions for all y ∈ Y (I) to obtain that

X ′(y) = (Y −1)′(y) =
1

Y ′(Y −1(y))
=

1
f(X(y), y)

.

The proof of the converse is analogous, so we omit it, and the claim is proven.

Finally, suppose that Y is the unique solution to (1.1) on the interval I =
[x0 − α, x0 + α], for some α > 0. We are going to prove that Y −1 is the unique
solution to (2.3) on the interval J = [y0 − β, y0 + β] provided that β > 0 is so
small that J ⊂ Y (I) and if X is any solution to (2.3) defined on an interval
J̃ ⊂ J then X(J̃) ⊂ I (such a choice of β is possible because 1/f is bounded on
N ). Let X be a solution to (2.3) on an interval J̃ ⊂ J . Since X−1 is a solution
to (1.1) on X(J̃) and X(J̃) ⊂ I, we conclude that X−1 = Y on X(J̃). Hence
X = Y −1 on J̃ . Analogous arguments show that uniqueness for (2.3) implies
uniqueness for (1.1). ¥

The main theoretical importance in the previous equivalence lies in the fact
that the dependent and the independent variables interchange their roles when
passing from (1.1) to (2.3), and this has the consequence that assumptions are
transferred from one argument to the other.
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The plan for generating new uniqueness theorems from old ones in case
f(x0, y0) 6= 0 is very simple now: look for appropriate assumptions on f which
imply that (2.3) falls inside the scope of the uniqueness theorem that you choose.
We carry out this plan with Lipschitz’s theorem in the next section.

3 LIPSCHITZ’S UNIQUENESS THEOREM RE-
VISITED.

This section is devoted to the following version of Lipschitz’s uniqueness theo-
rem, which is a straightforward consequence of Theorems 1.1 and 2.1.

Theorem 3.1. Let N be a neighborhood of a point (x0, y0) ∈ R2 and let f :
N → R be continuous on N .

If f(x0, y0) 6= 0 and, moreover, f satisfies a Lipschitz condition with respect
to the first variable on N , i.e.,

∃ L > 0 such that (s, y), (x, y) ∈ N ⇒ |f(s, y)− f(x, y)| ≤ L|s− x|, (3.4)

then (1.1) has a unique solution.

Proof. Theorem 2.1 applies because f(x0, y0) 6= 0, so it suffices to prove that
(2.3) has a unique solution. To do so, note that the continuity of f implies that
there exists a neighborhood of (x0, y0) where |f | ≥ |f(x0, y0)|/2 =: r > 0. For
simplicity we assume that this holds on N , so for (x, y), (s, y) ∈ N we have

∣∣∣∣
1

f(x, y)
− 1

f(s, y)

∣∣∣∣ =
∣∣∣∣
f(s, y)− f(x, y)
f(x, y)f(s, y)

∣∣∣∣ ≤
L

r2
|s− x|,

and therefore Theorem 1.1 guarantees that (2.3) has a unique solution (remem-
ber that x is the dependent variable in (2.3)). ¥

A very useful consequence of Theorem 3.1 concerns differential equations
with continuously differentiable right-hand sides.

Corollary 3.1. Let N be a neighborhood of a point (x0, y0) ∈ R2 and let
f : N → R be continuous on N .

If f(x0, y0) 6= 0 and, moreover, ∂f/∂x is continuous on N , then (1.1) has
a unique solution.

Proof. Let N ′ be a compact neighborhood of (x0, y0) such that N ′ ⊂ N , and
let L > 0 be an upper bound of |∂f/∂x| on N ′. Now for (x, y), (s, y) ∈ N ′,
x 6= s, the mean value theorem guarantees the existence of r, strictly between
x and s, such that

|f(x, y)− f(s, y)| =
∣∣∣∣
∂f

∂x
(r, y)

∣∣∣∣ |x− s| ≤ L|x− s|.

Hence Theorem 3.1 implies that (1.1) has a unique solution. ¥
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Example 3.1. The nonlinear problem

y′ = cos x + x 3
√

y, y(0) = 0

has a unique solution by virtue of Corollary 3.1. Notice that the right-hand
side of the differential equation does not satisfy the assumptions of Lipschitz’s
uniqueness theorem on any neighborhood of the initial condition.

An important particular case of the preceding corollary is that of autonomous
differential equations. The following classical uniqueness result, which goes back
to Peano, see [12], follows immediately from Corollary 3.1.

Corollary 3.2. Let ε > 0, g : (y0 − ε, y0 + ε) → R continuous, and x0 ∈ R.
If g(y0) 6= 0 then the autonomous problem

y′ = g(y), y(x0) = y0 (3.5)

has a unique solution.

Example 3.2. In the nonautonomous case the condition f(x0, y0) 6= 0 alone is
not sufficient for uniqueness for (1.1). As an example observe that the change of
variable y = z+x transforms the autonomous problem dz/dx = 3z2/3, z(0) = 0,
which appears in Example 1.1, into the nonautonomous one

y′ = 3(y − x)2/3 + 1, y(0) = 0,

for which the right-hand side does not vanish at the initial data and has Y1(x) =
x and Y2(x) = x3 + x as solutions for all x ∈ R. In this case the right-hand
side does not satisfy either (1.2) or (3.4) on any neighborhood of the initial
condition.

4 CONCLUDING REMARKS.

1. The claim in the proof of Theorem 2.1 also provides us with an integration
method, as (2.3) may be integrable even though (1.1) is not. In fact, it is a
well-known trick in the field of differential equations to try and solve dx/dy =
1/f(x, y) instead of dy/dx = f(x, y) whenever the last differential equation
is not solvable by elementary methods. It seems however that its underlying
theoretical implications in connection with uniqueness were not fully exploited
until the last decade.

The claim in the proof of Theorem 2.1 was established in a more general form
by the authors in [3], and it was used there to derive a number of consequences,
including Theorem 3.1 (Theorem 2.7 in [3]). Later, Cid extended Theorem 3.1
to systems of differential equations in [2].

It was after the publication of [2, 3] that the authors became aware of the
work done by Mortici in [9, 10]. As far as we know, Mortici was the first author
who deduced Theorem 3.1.
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2. Most uniqueness criteria are based on generalizations of the standard Lips-
chitz’s condition (1.2), see [1], or require some monotonicity assumptions such
as those in [15, 16]. Theorem 2.1 is the key to establishing alternative versions
of all of them with assumptions “transferred from y to x”. This yields a lot of
new uniqueness theorems that readers may find useful in different situations.
A complete account of even the most relevant of them exceeds the objectives
of the present article, but we point out as a final example the analog of the
so-called Peano’s uniqueness criterion (which can be looked up in [1]):

Theorem 4.1. Let N be a neighborhood of a point (x0, y0) ∈ R2 and let f :
N → R be continuous on N .

If f(x0, y0) 6= 0 and, moreover, f is nondecreasing with respect to its first
variable (i.e., f(s, y) ≤ f(x, y) whenever (s, y), (x, y) ∈ N and s ≤ x), then
(1.1) has a unique solution.
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[11] G. Peano, Sull’integrabilità delle equazioni differenzialli di primo ordine,
Atti. Accad. Sci. Torino 21 (1886) 677–685.
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