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July 13, 2012
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Abstract

This paper is devoted to construct an algorithm that allows us to calculate the
explicit expression of the Green’s function related to a nth – order linear ordinary dif-
ferential equation, with constant coefficients, coupled with two – point linear boundary
conditions. We develop this algorithm by making a Mathematica package.
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1 Introduction

When we consider a nth – order homogeneous linear ordinary differential equation,
Lu(t) = 0, t ∈ [a, b], it is very well known that there are n linearly independent
functions, which generate the general solution of the equation, i.e., any solution of the
considered equation is a linear combination of such functions. When a inhomogeneous
equation Lu(t) = σ(t), t ∈ [a, b], is considered, we need to find a particular solution,
for each σ given, and add it to the general expression of the homogeneous equation,
and so we have the general solution of the inhomogeneous equation.

If we fix the values of u and its first n − 1 derivatives at the starting point of
the interval a, under suitable regular assumptions on the data, we know that such
initial problem is uniquely solvable. Moreover the expression of its unique solution is
attained by obtaining the unique values of the coefficients in the expression given for
the general case. When the coefficients of the linear operator are constants, such values
are calculated by solving a related nth – dimensional linear algebraic system.

However, when we treat problems in which the function and/or some of its deriva-
tives up to order n−1, attain values at the two extremal points of the interval a and b,
we have that the existence of solution of the linear two – point boundary value problem
is, in general, not ensured. For this reason it is very important to develop tools that
allow us to ensure the existence and uniqueness of the solution of the studied problem
and, moreover, to calculate its exact expression.

∗Partially supported by FEDER and Ministerio de Educación y Ciencia, Spain, project MTM2010-15314.

1



There are several methods to solve a boundary value problem, such as series expan-
sions, the Laplace transform or the invariant imbedding (see [33]), but in our opinion
the most appropriate way is by calculating the so called Green’s function1: roughly
speaking, if problem Lu = σ, coupled with homogeneous linear boundary value con-
ditions, has only the trivial solution for σ ≡ 0, then the associated linear operator is
invertible and its inverse operator, L−1σ, is characterized by an integral kernel, G(t, s),
called the Green’s function. The solution of the problem Lu = σ is then given by

u(t) = L−1σ(t) :=

∫ b

a

G(t, s)σ(s)ds, t ∈ [a, b].

We notice that, once we read the expression of the Green’s kernel, we know the cases
(if the linear operator depends on some parameters, for instance) in which it is not
defined and, in consequence, the resonant cases (of non uniqueness of the homogeneous
problem) are explicitly given. The main advantage of the Green’s function is the fact
that it is independent on the function σ. To get the exact solution for each particular
case of σ we only need to calculate the corresponding integral, and so we have the
expression that we are looking for. We do not need to develop a new computation for
each σ: once we have the expression of function G, the problem is solved for any σ for
which the integral is well defined (this is due to the fact that the Green’s function is
just the kernel of the operator L−1).

Moreover, by means of the integral expression, we can also obtain some additional
qualitative information about the solutions of the considered problem, such as their sign,
oscillation properties, a priori bounds or their stability. For these reasons the theory
of Green’s functions is a fundamental tool in the analysis of differential equations. It
has been widely studied in the literature [9, 15, 17, 18, 21, 32, 34, 36, 39, 40] and it
has a great importance in order to use monotone iterative techniques, [24, 22], lower
and upper solutions, [4, 6, 14, 24], fixed point theorems, [12, 36, 37, 38], or variational
methods [35].

On the other hand, the explicit expression of the Green’s function is, in general,
very complicated and the calculations are carried out in a great technical difficulty.
That is why our main goal consists on providing a software for the computation of the
Green’s function for a nth – order linear problem with constant coefficients. To the
best of our knowledge, this software is not available in the literature (see for instance
[1, 20, 23, 25]).

Finally we remark that, from the physical point of view, the Green’s function can
be also defined as the response of a linear system to the unit impulse at time s, that is,

G(t, s) = L−1δs(t),

where δs is the unit Dirac measure concentrated at t = s (see [18]).
The chapter is organized as follows: in the second section we present the basic facts

of the general theory about existence and uniqueness of a Green’s function for nth –
order linear problems coupled with linear boundary conditions. In the third section we
focus our attention on nth – order linear equations with constant coefficients and we
develop and algorithm, based on some results in [6, 7, 8], to perform the computation
of the Green’s function by solving a n×n algebraic linear system. In the fourth section
we review the relation between the sign of the Green’s function and the maximum
principles and its importance to develop monotone methods under the presence of
lower and upper solutions. Finally, in the last section we use the scientific software
Mathematica to implement the algorithm previously developed to effectively compute
the Green’s function. The entire code of the constructed package is showed, as an
appendix, at the end of the paper.

1George Green (1793-1841) was the first mathematician to use such kind of kernels to solve boundary
value problems.
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2 Green’s function: definition, existence and unique-
ness

There are many books where the reader can consult the basic theory of Green’s func-
tions (see for instance [2, 5, 13, 18, 19, 28]). We shall follow the exposition in [28] by
the good balance between clarity and generality.

We will consider two – point nth – order linear boundary value problems of the form

Lny(t) = σ(t), t ∈ I ≡ [a, b], Ui(y) = γi, i = 1, . . . ,m, (1)

where

Lny(t) ≡ a0(t) y(n)(t) + a1(t) y(n−1)(t) + . . .+ an−1(t) y′(t) + an(t) y(t), t ∈ I,

and

Ui(y) ≡
n−1∑
j=0

(
αij y

(j)(a) + βij y
(j)(b)

)
, i = 1, . . . ,m, m ≤ n, (2)

being αij , β
i
j and γi real constants for all i = 1, . . . ,m, and j = 0, . . . , n − 1, σ and ak

continuous real functions for all k = 0, . . . , n, and a0(t) 6= 0 for all t ∈ I.
It is well-known that the solution set of the linear equation Lny = 0 is a n-

dimensional vector subspace of Cn(I). Any base of such subspace will be called a
fundamental set of solutions of equation Lny = 0.

The homogeneous problem

Lny(t) = 0, t ∈ I, Ui(y) = 0, i = 1, . . . ,m, (3)

is said to be k-compatible, 0 ≤ k ≤ n, if its set of solutions has dimension equals to k.
The following propositions are simple exercises of Linear Algebra.

Proposition 2.1. Let
(
y1, . . . , yn

)
be a fundamental set of solutions of Lny = 0. Then,

problem (3) is k-compatible if and only if

rank

U1(y1) . . . U1(yn)
...

. . .
...

Um(y1) . . . Um(yn)

 = n− k.

Corollary 2.1. The homogeneous problem (3) has only the trivial solution if and only
if

rank

U1(y1) . . . U1(yn)
...

. . .
...

Um(y1) . . . Um(yn)

 = n.

In particular the number of boundary conditions, m, must be equal to the order of
the equation, n.

Proposition 2.2. Let (y1, . . . , yn) be a fundamental set of solutions of Lny = 0 and
let yp be an arbitrary solution of the complete equation Lny = σ. Then, any translation
of the solution set of problem (1) to the origin has dimension equals to k if and only if

rank

U1(y1) . . . U1(yn)
...

. . .
...

Um(y1) . . . Um(yn)

 = rank

U1(y1) . . . U1(yn) γ1 − U1(yp)
...

. . .
...

...
Um(y1) . . . Um(yn) γn − Um(yp)

 = n−k.

As consequence of the previous propositions we obtain the celebrated Fredholm’s
Alternative Theorem.

3



Theorem 2.2 (Fredholm’s Alternative). The problem

Lny(t) = σ(t), t ∈ I, Ui(y) = γi, i = 1, . . . , n, (4)

where the number, n, of boundary conditions equals the order of the linear equation,
has a unique solution if and only if the associated homogeneous problem

Lny(t) = 0, t ∈ I, Ui(y) = 0, i = 1, . . . , n, (5)

has only the trivial solution.

Now we introduce the axiomatic definition for the Green’s function associated to
the problem (3).

Definition 2.1. We say that G is a Green’s function for problem (3) if it satisfies the
following properties:

(G1) G is defined on the square I × I.

(G2) For k = 0, 1, . . . , n−2, the partial derivatives
∂kG

∂tk
exist and they are continuous

on I × I.

(G3)
∂n−1G

∂tn−1
and

∂nG

∂tn
exist and are continuous on the triangles a ≤ s < t ≤ b and

a ≤ t < s ≤ b.
(G4) For each t ∈ (a, b) there exist the lateral limits

∂n−1G

∂tn−1
(t, t+) and

∂n−1G

∂tn−1
(t, t−)

(i.e., the limits when (t, s)→ (t, t) with s > t or with s < t) and, moreover

∂n−1G

∂tn−1
(t, t+)− ∂n−1G

∂tn−1
(t, t−) = − 1

a0(t)
.

(G5) For each s ∈ (a, b), the function t → G(t, s) is a solution of the differential
equation Lny = 0 on t ∈ [a, s) and t ∈ (s, b]. That is,

a0(t)
∂nG

∂tn
(t, s) + a1(t)

∂n−1G

∂tn−1
(t, s) + . . .+ an−1(t)

∂G

∂t
(t, s) + an(t)G(t, s) = 0,

on both intervals.

(G6) For each s ∈ (a, b), the function t → G(t, s) satisfies the boundary conditions
Ui(G(·, s)) = 0, i = 1, . . . ,m:

n−1∑
j=0

(
αij

∂jG

∂tj
(a, s) + βij

∂jG

∂tj
(b, s)

)
= 0, i = 1, . . . ,m.

The main importance of the previous definition is that the integral operator, whose
kernel is a Green’s function, gives us the solution for the semi-homogeneous problem

Lny(t) = σ(t), t ∈ I, Ui(y) = 0, i = 1, . . . ,m, (6)

as it is showed in the following result.

Theorem 2.3. Let G be a Green’s function of problem (3). Then, for each continuous
function σ, we have that

y(t) =

∫ b

a

G(t, s)σ(s) ds, t ∈ I, (7)

is a solution of problem (6).
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The following is the main result of this section. We present the proof because it is
constructive.

Theorem 2.4. Let us suppose that the homogeneous problem (5) has only the trivial
solution. Then there exists a unique Green’s function, G(t, s), related to (5). Moreover,
for each continuous function σ, the unique solution of problem

Lny(t) = σ(t), t ∈ I, Ui(y) = 0, i = 1, . . . , n, (8)

is given by expression (7).

Proof. First we will show that a Green’s function related to the initial value problem

Lny(t) = 0, t ∈ I, y(i)(a) = 0, i = 0, . . . , n− 1, (9)

is given by

K̃(t, s) =


K(t, s), if a ≤ s ≤ t,

0, if t < s ≤ b,
where

K(t, s) :=

∣∣∣∣∣∣∣∣∣∣∣

y1(s) . . . yn(s)
y′1(s) . . . y′n(s)

...
. . .

...

y
(n−2)
1 (s) . . . y

(n−2)
n (s)

y1(t) . . . yn(t)

∣∣∣∣∣∣∣∣∣∣∣
a0(s)W (y1, . . . , yn)(s)

,

being (y1, . . . , yn) a fundamental set of solutions of equation Lny = 0, and

W (y1, . . . , yn)(s) =

∣∣∣∣∣∣∣∣∣
y1(s) . . . yn(s)
y′1(s) . . . y′n(s)

...
. . .

...

y
(n−1)
1 (s) . . . y

(n−1)
n (s)

∣∣∣∣∣∣∣∣∣
is its corresponding Wronskian.

Following Definition 2.1, we only need to check that function K̃ satisfies properties
(G1) – (G6).

It is not difficult to verify that, for k = 0, 1, . . . , n − 2, the partial derivatives
∂kK̃/∂tk exist and they are equal to

∂kK̃

∂tk
(t, s) =



∣∣∣∣∣∣∣∣∣∣∣∣

y1(s) . . . yn(s)
y′1(s) . . . y′n(s)

...
. . .

...

y
(n−2)
1 (s) . . . y

(n−2)
n (s)

y
(k)
1 (t) . . . y

(k)
n (t)

∣∣∣∣∣∣∣∣∣∣∣∣
a0(s)W (y1, . . . , yn)(s)

, if a ≤ s ≤ t,

0, if t < s ≤ b,

so, they are continuous on I × I for all n ≥ 2 (notice that if s = t then two rows are
equal in the determinant) . As consequence, condition (G2) is satisfied.

The same formula is also valid on the two triangles for the partial derivatives

∂n−1K̃

∂tn−1
(t, s) and

∂nK̃

∂tn
(t, s),

5



so condition (G3) is also satisfied.
With respect to the lateral limits on the previous derivative, we have that

∂n−1K̃

∂tn−1
(t, t+) = 0,

and

∂n−1K̃

∂tn−1
(t, t−) =

∂n−1K

∂tn−1
(t, t−) =

∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) . . . yn(t)
y′1(t) . . . y′n(t)

...
. . .

...

y
(n−2)
1 (t) . . . y

(n−2)
n (t)

y
(n−1)
1 (t) . . . y

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣∣∣∣
a0(t)W (y1, . . . , yn)(t)

=
1

a0(t)
.

So, we conclude that condition (G4) is fulfilled.
On the first triangle, a ≤ s < t, for fixed s, K̃(t, s) is a linear combination of

y1(t), . . . , yn(t), so condition (G5) holds.
Obviously, for all s ∈ (a, b) it is satisfied that

∂k

∂tk
K̃(a, s) = 0 for all k = 0, . . . , n− 1.

Therefore K̃(t, s) satisfies conditions (G1) – (G6) with respect to the initial value
problem (9).

Now, in order to construct a Green’s function for problem (5), let us consider n
continuous functions on I, c1, . . . , cn. Now we are going to look for a Green’s function
of the form

G(t, s) = K̃(t, s) + c1(s) y1(t) + . . .+ cn(s) yn(t).

It is easy to verify that function G satisfies conditions (G1) – (G5). It only rests to
show that it is possible to choose c1, . . . , cn such that G satisfies (G6) for problem (5),
that is, for each s ∈ (a, b) we need to verify that

Ui(G(·, s)) = 0, ∀ i = 1, . . . , n, ∀ s ∈ I.

By linearity, we have that

Ui(G(·, s)) = Ui(K̃(·, s)) +

n∑
j=1

cj(s)Ui(yj), i = 1, . . . , n,

that is, (c1(s), . . . , cn(s)) should be a solution of the linear systemU1(y1) . . . U1(yn)
...

. . .
...

Un(y1) . . . Un(yn)


c1(s)

...
cn(s)

 = −

U1(K̃(·, s))
...

Un(K̃(·, s))

 .

Now, since the homogeneous boundary value problem (5) has only the trivial solu-
tion, we know from Corollary 2.1 that the rank of the previous matrix is equal to n.
Thus, the system has a unique solution given byc1(s)

...
cn(s)

 = −

U1(y1) . . . U1(yn)
...

. . .
...

Un(y1) . . . Un(yn)


−1 U1(K̃(·, s))

...

Un(K̃(·, s))

 .

Moreover, from this expression, we know that functions c1, . . . , cn are continuous
and, therefore, G is a Green’s function of problem (5).
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Now, from Theorem 2.3, we know that

y(t) =

∫ b

a

G(t, s)σ(s) ds, t ∈ I,

is a solution of problem (8) and, moreover, this solution is unique by Fredholm’s Al-
ternative Theorem (see Theorem 2.2).

Now, to prove the uniqueness of the Green’s function, let us suppose that G̃ is
another function satisfying conditions (G1) – (G6) for problem (5). Then for all t ∈ I
and all continuous function σ, it is satisfied that∫ b

a

G(t, s)σ(s) ds =

∫ b

a

G̃(t, s)σ(s) ds, t ∈ I,

which implies that
G(t, s) = G̃(t, s),

for all t, s ∈ I, if n ≥ 2, and for all t 6= s if n = 1, because in this last case the Green’s
function is discontinuous at the diagonal of the square of definition.

3 Computation of the Green’s function for lin-
ear differential equations with real constant coef-
ficients

In this section we deal with the two – point boundary value problem

Lny(t) = σ(t), t ∈ I, Ui(y) = 0, i = 1, . . . , n, (10)

where now the linear equation has real constant coefficients, that is:

Lny(t) = y(n)(t) + a1 y
(n−1)(t) + . . .+ an−1 y

′(t) + an y(t), t ∈ I,

with a1, a2, . . . , an ∈ R. Moreover, let us suppose that the linear functionals Ui defined
by (2), with aj , α

i
j , β

i
j ∈ R for all i = 1, . . . , n and j = 0, . . . , n − 1, are such that the

asociated homogeneous problem

Lny(t) = 0, t ∈ I, Ui(y) = 0, i = 1, . . . , n, (11)

has only the trivial solution.
Clearly both problems are particular cases of (8) and (5), respectively.
We will develop a method to compute explicitly the Green’s function. Such a

method will allow us to obtain its expression by solving a linear algebraic system of
dimension n. The following result for initial value problems is proved in [8].

Theorem 3.1. Let r be the unique solution of the initial value problem

u(n)(t) +

n−1∑
i=0

an−i u
(i)(t) = 0, t ∈ R,

u(i)(0) = 0, i = 0, . . . , n− 2, (12)

u(n−1)(0) = 1.

Then, the unique solution of the initial value problem

y(n)(t) +

n−1∑
i=0

an−i y
(i)(t) = σ(t), t ∈ I, (13)

y(i)(a) = λi, i = 0, . . . , n− 1,
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with σ ∈ C(I) and λi ∈ R, i = 0, . . . , n− 1, is given by

y(t) =

∫ t

a

r(t− s)σ(s) ds+

n−1∑
k=0

yk(t)λk, (14)

where

yk(t) = r(n−1−k)(t− a) +

n−1∑
j=k+1

an−j r
(j−k−1)(t− a), t ∈ R, k = 0, . . . , n− 1. (15)

Proof. Let us define

v(t) =

∫ t

a

r(t− s)σ(s) ds, t ∈ I.

From the definition of r and the differentiation Leibniz’s rule, we obtain that

v(i)(t) =

∫ t

a

r(i)(t− s)σ(s) ds, t ∈ I, i = 0, 1, . . . , n− 1,

and

v(n)(t) =

∫ t

a

r(n)(t− s)σ(s) ds+ σ(t), t ∈ I.

In consequence,

v(i)(a) = 0, t ∈ I ∀ i = 0, 1, . . . , n− 1

and, for all t ∈ I,

v(n)(t) +

n−1∑
i=0

an−i v
(i)(t) =

∫ t

a

[
r(n)(t− s) +

n−1∑
i=0

an−i r
(i)(t− s)

]
σ(s) ds+ σ(t) = σ(t).

On the other hand, it is clear that

(r′)(n)(t) +

n−1∑
i=0

an−i (r′)(i)(t) = 0, t ∈ R,

r′(0) = . . . = r(n−2)(0) = 0

r(n−1)(0) = 1

r(n)(0) = −a1.

So, the function yn−2(·) ≡ r′(· − a) + a1 r(· − a) is the unique solution of problem

y(n)(t) +

n−1∑
i=0

an−i y
(i)(t) = 0, t ∈ R,

y(i)(a) = 0, i = 0, . . . , n− 1, i 6= n− 2,

y(n−2)(a) = 1.

Analogously, we can prove that for all j ∈ {0, 1, . . . , n− 1}, the function yn−1−j is
the unique solution of

y(n)(t) +

n−1∑
i=0

an−i y
(i)(t) = 0, t ∈ R, (16)

y(i)(a) = 0, i = 0, . . . , n− 1, i 6= n− 1− j, (17)

y(n−1−j)(a) = 1. (18)
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Therefore,

u(t) = v(t) +

n−1∑
i=0

yi(t)λi, t ∈ I,

is the unique solution of problem (13), as we want to prove.

From the previous result, we know that the unique solution of the initial problem
(13) is given by the expression (14), where r is the unique solution of problem (12), the
functions yk satisfy (15) and λk are given real parameters.

Analogously to the proof of Theorem 2.4, if we consider the bounday value problem
(10), we will search for a Green’s function of the form

G(t, s) =


r(t− s) +

n−1∑
k=0

yk(t) dk(s), if a ≤ s ≤ t ≤ b,
n−1∑
k=0

yk(t) dk(s), if a ≤ t < s ≤ b,
(19)

where the continuous real functions dk are the unknowns.
Taking into account (7) and (19), we obtain

0 =

n−1∑
j=0

(
αij y

(j)(a) + βij y
(j)(b)

)

=

n−1∑
j=0

[
αij

∫ b

a

n−1∑
k=0

y
(j)
k (a) dk(s)σ(s) ds+

+ βij

∫ b

a

r(j)(b− s)σ(s) ds+ βij

∫ b

a

n−1∑
k=0

y
(j)
k (b) dk(s)σ(s) ds

]
=

n−1∑
j=0

[
βij

∫ b

a

r(j)(b− s)σ(s) ds
]

+

n−1∑
j=0

∫ b

a

dk(s)
[
αij

n−1∑
k=0

y
(j)
k (a) + βij

n−1∑
k=0

y
(j)
k (b)

]
σ(s) ds

=

∫ b

a

[
n−1∑
j=0

βij r
(j)(b− s) +

n−1∑
k=0

dk(s)Ui(yk)

]
σ(s) ds.

Since yk, r and Ui has been previously obtained, by solving the linear system

n−1∑
k=0

dk(s)Ui(yk) = −
n−1∑
j=0

βij r
(j)(b− s), i = 1, . . . , n, (20)

we obtain the expression of dk(s) and, therefore, we have the formula for G(t, s).
Notice that system (20) is equivalent to

U1(y0) · · · U1(yn−1)
...

. . .
...

Un(y0) · · · Un(yn−1)


 d0(s)

...
dn−1(s)

 = −



n−1∑
j=0

β1
j r

(j)(b− s)

...
n−1∑
j=0

βnj r
(j)(b− s)


. (21)

Since problem (11) has only the trivial solution, from Theorem 2.2 and Corollary
2.1, we have that the previous system is uniquely solvable.
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3.1 The periodic problem

As we have seen in the proof of Theorem 3.1, to obtain the expression of the Green’s
function related to problem (11) is reduced to solve the algebraic system (21). Moreover
the existence and uniqueness of such function is equivalent to the uniqueness of solution
of the corresponding algebraic system.

From the definition of the functions yk given in (15), we only need to calculate the
function r as the unique solution of the initial value problem (12). Despite this, in some
cases, depending on the order of the equation and the nonzero parameters involved in
the operator Ln and the functionals Ui, the expressions of the continuous functions dk
can present a very complicated expression which is very difficult to simplify. Is for this
reason that in some particular cases of boundary conditions one can find more suitable
ways to calculate the Green’s function. Due to its importance, we make special mention
to the periodic case, that is,

Ui(y) ≡ y(i)(b)− y(i)(a), i = 0, . . . , n− 1.

In this situation, the expression of the Green’s function is showed in the following
result, which has been proved in [7, Lemma 2.1] (see also [6, Lemma 2.1]) for the
particular interval [0, 2π]. The proof follows similar steps to those of Theorem 3.1 and
so it is omitted.

Lemma 3.2. Suppose that the linear periodic boundary value problem:

Ln u(t) = σ(t), t ∈ I, u(i)(a)− u(i)(b) = µi, i = 0, . . . , n− 1,

has a unique solution u ∈ Cn(I) for all σ ∈ C(I).
Then u is given by the expression

u(t) =

∫ b

a

G(t, s)σ(s) ds+

n−1∑
i=0

ri(t)µi.

Here rj ∈ C∞(R), j = 0, 1, . . . , n− 1, is the unique solution of the linear problem:

Ln z(t) = 0, t ∈ R, (22)

z(i)(a)− z(i)(b) = 0, i = 0, . . . , n− 1 ; i 6= j, (23)

z(j)(a)− z(j)(b) = 1, (24)

and

G(t, s) =


rn−1(a+ t− s), if a ≤ s ≤ t ≤ b

rn−1(b+ t− s), if a ≤ t ≤ s ≤ b.
(25)

Furthermore, for all i = 0, . . . , n− 2, the following expression holds:

ri(t) = r
(n−1−i)
n−1 (t) +

n−i−1∑
j=1

an−j r
(j−i−1)
n−1 (t), t ∈ I.

It is obvious that the expression given in the previous lemma is easier to compute
that the one given in the first part of this section. In this case we only need to obtain
the expression of the function rn−1, which is deduced by solving a n×n constant linear
algebraic system.
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4 Green’s functions, maximum principles and mono-
tone iterative methods

It is well know that if u is a twice differentiable function on a compact interval I and
u′′ ≥ 0 on the interior of I then u satisfies a (strong) maximum principle, that is: if u
attains its maximum in an interior point then u is a constant function on I.

Maximum principles, in their different forms, play a very important role in the
study of differential equations (see [26, 31]). In particular the above maximum principle
implies that whenever u satisfies

u′′(t) ≥ 0 for all t ∈ I, u(∂I) ≤ 0,

then u ≤ 0 on I (in fact as the maximum principle is strong either u ≡ 0 or u < 0 on
the interior of I).

This last result (also called in the literature maximum principle) is fundamental in
order to implement monotone iterative methods. For instance, when dealing with the
second order Dirichlet problem

u′′(t) = f(t, u(t)), t ∈ I, u(∂I) = 0, (26)

the maximum principle allows to prove the convergence of the iterative sequence

u′′n+1(t) = f(t, un(t)), t ∈ I, un+1(∂I) = 0,

u0 = α or u0 = β,

to a solution of (26), being α ≤ β lower and upper solutions ([14]), that is, they satisfy
the differential inequalities

α′′(t) ≥ f(t, α(t)), t ∈ I, α(∂I) ≤ 0,

β′′(t) ≤ f(t, β(t)), t ∈ I, β(∂I) ≥ 0.

In an abstract setting we say that operator L satisfies the maximum principle if

Lu ≥ 0 on I =⇒ u ≤ 0 on I,

and that L satisfies an anti-maximum principle if

Lu ≥ 0 on I =⇒ u ≥ 0 on I.

Concerning the general boundary value problem (6), we recall (see Section 2) that if
the linear homogeneous boundary value problem (5) is non resonant (i.e., it has only the
trivial solution) then the unique solution of the problem (6) is given by the expression
(7).

As consequence, it is clear that if the linear operator L satisfies a maximum or
an anti-maximum principle then the homogeneous problem is nonresonant and there
exists L−1. Then, the maximum principle is equivalent to L−1 be inverse negative
(that is, u ≥ 0⇒ L−1u ≤ 0) while the anti-maximum principle is equivalent to L−1 be
inverse positive (that is, u ≥ 0 ⇒ L−1u ≥ 0). So, in terms of the sign of the Green’s
function, the maximum principle is equivalent to G(t, s) ≤ 0 for all (t, s) ∈ I × I
and the anti-maximum principle is equivalent to G(t, s) ≥ 0 for all (t, s) ∈ I × I.
For this reason the searching for conditions implying the constant sign of the Green’s
function has received a lot of attention from many researchers in the last decades (see
[3, 9, 11, 21, 29, 30, 36, 39] and references therein).
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5 Implementation of the Green’s function by means
of Mathematica

The purpose of this section is to construct an algorithm for computing the Green’s
function of problem (10). Such construction is based on the expression (19). To arrive
at such expression, we must previously found the functions r, yk and dk.

Due to the fact that the function r is the unique solution of the initial value problem
(12), the first step consists on solving such problem.

Once we have this expression we obtain the expression of yk, the unique solutions
of the related problems (16) – (18).

The next step of the algorithm is to solve the system (20). In consequence, to ensure
the existence and uniqueness of the Green’s function, we must verify, in a first moment,
that the matrix of system (20) is invertible. Otherwise, there is not Green’s function
and this ends the process.

When the system (20) is uniquely solvable, once we have obtained its unique solu-
tion, dk, we arrive at the expression of the Green’s function, G(t, s), by means of the
expression (19) defined in the two triangles a ≤ s < t ≤ b and a ≤ t < s ≤ b.

As we have noticed in the previous section, the calculations involved in this process
are very complicated, so, for higher order equations and several boundary conditions,
the resolution may be very slow and the simplifications unavailable. On the other
hand, for the particular case of homogeneous periodic boundary conditions we only
must obtain the function rn−1, defined in (22) – (24), in order to have the expression
of the Green’s function from equation (25).

The outline of the described algorithm can be seen in the flow diagram of Figure 1.

5.1 The Module enviroment to calculate the Green’s Func-
tion

By using the scientific software Mathematica 8.0.1.0 and the previously described al-
gorithm, we implemented a program in which, by supplying the order equation, the
coefficients of the linear operator and the two – point boundary conditions on the
interval I, it is calculated the related Green’s function.

Using the Manipulate environment, and taking advantage of the Module that we
are going to describe, we will design a “friendly” environment that allows to the user
to enter data and interact with the program in a simple manner. Moreover, we can see
and manipulate both the analytical outputs as the graphical results.

In this section we focus our attention on the technical aspects of the Module and
we leave the aspects of the Manipulate to the next subsection.

The Mathematica Module that we are going to describe, runs once we previously
know the following values:

1. the order of the equation (n),

2. the coefficients (vector c),

3. the extremes of the interval (exta and extb)

4. the two – point boundary conditions depending on a and b (vector cc).

Moreover we have the option Periodicity (False / True).
As consecuence we can enter the values for the aforementioned variables and simply

pick up at the Module to run. As we have noticed, in the next section we will explain
how to insert this Module into the Manipulate to enhance the user interaction.

Our Module is divided into two algorithms, depending on whether the boundary
conditions are, or not, the periodic ones. In this last case, we can choose the more
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Figure 1: Flow diagram of the algorithm.

specific algorithm explained at the beggining of this section. Let us start to describe
the generic algorithm presented in the first part of section 5, which will become if we
keep the Periodicity option as False.

At the beginning, the program checks that both the number of the coefficients and
of the boundary conditions equal the order of the considered equation. Due to the fact
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that such conditions should be evaluated in the Module, in order to find the coefficients
of the system described in (20), these boundary conditions must be a real function and
not a vector, as they have been introduced by the keyboard. We have decided to ask
for a n – dimensional vector because in this case it is not necessary to enter all the
coefficients αij , β

i
j , in functions Ui. It is the Module which calculates these coefficients

directly from the introduced vector.
To carry out the transformation of each boundary condition into a real function, it

is defined an auxiliary function at the beginning of the Module (aux). This function
saves the vector that contains the boundary conditions as a function that depends on
u, exta and extb. After transforming it into a system, the coefficients that multiply
u(j)(exta) and u(j)(extb) are extracted as αij and βij , respectively. So the function is
well defined.

The part of the code that makes this step is showed below. Here aux is the auxiliary
function, that has been previously defined from the vector that contains the boundary
conditions:

Do
[
alfa[i, j] = Coefficient

[
aux[u][exta, extb][[i]], u

(j)
[exta]

]
, {j, 0, Length[c]− 1}, {i, 1, Length[c]}

]
;

Do
[
beta[i, j] = Coefficient

[
aux[u][exta, extb][[i]], u

(j)
[extb]

]
, {j, 0, Length[c]− 1}, {i, 1, Length[c]}

]
;

Once the coefficients αij and βij have been extracted, are defined the functionals Ui,
which depends on u, exta and extb:

Do

Ui[u ][exta , extb ] =

Length[c]−1∑
j=0

(
alfa[i, j] ∗ u(j)

[exta] + beta[i, j] ∗ u(j)
[extb]

)
, {i, 1, Length[c]}


The first step of the algorithm mentioned above is to find the unique solution of the

initial value problem (12). This problem is solved by using the Mathematica DSolve
command. The result is saved as a function r that depends on t.

Denoting by n the order of the equation and by c the vector where the coefficients
are saved, the equation (12) is introduced in the program as:

ec:=y(Length[c])[t] +

Length[c]∑
i=1

c[[i]] y(Length[c]−i)[t].

The initial value problem (12) is solved in the sentence

DSolve
[
Join

[
{ec == 0}, Table

[
y(i)[0] == 0, {i, 0, n− 2}

]
,
{
y(n−1)[0] == 1

}]
, y, t

]
;

Note that this output is a list, so we need to extract the corresponding part of the
function with y[t]/.DSolve[· · · ][[1]]. The input DSolve returns the simplified solution,
and so on numerous occasions this result shows an expression in which it appears
complex numbers when this expression of the solution is the shortest one. We notice
that, for higher order equations, it is very usual that Mathematica solves the previous
equation with dependence on the roots of the characteristic polynomial. In this case
the expression of the solution appears as a function of the (unknown for Mathematica)
corresponding roots. This makes the expression of the Green’s function impossible to
process in practical situations. For this reason the program checks if the word Root
appears in the expression and, if it is the case, it makes the transformation c = N [c]
over the coefficients. This fact implies that Mathematica considers such coefficients
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as a numerical approximation of the corresponding exact numbers, and it makes the
next calculations for functions r, yk and, as consequence, for the Green’s function G,
as numerical approximations too. Our experiments show us that the numerical error is
around 10−15.

The second step of the algorithm consists on solving the associated problem (16)
– (18). The solution is obtained either directly by using DSolve or by means of the
expression (15), depending if either all the introduced data are real numbers or there
is some parameter. The implementation in Mathematica is as follows:

If[(c ∈ Reals ∧ extb ∈ Reals ∧ exta ∈ Reals)===True,

Do[soluci[k] = DSolve
[
Join

[{
y(Length[c])[t] +

∑Length[c]
i=1 c[[i]]y(Length[c]−i)[t] == 0

}
,

Table
[
y(i)[0] == 0, {i, 0, k− 2}

]
,
{
y(k−1)[0] == 1

}
,

Table
[
y(i)[0] == 0, {i, k,Length[c]− 1}

]]
, y, t

]
;

yk[k][t ] = FullSimplify[ComplexExpand[y[t]/.Extract[soluci[k], {1, 1}]]]; ,

{k, 1,Length[c]}],

Do
[
yk[k][t ] = r(Length[c]−k)[t] +

∑Length[c]−1
j=k c[[Length[c]− j]]r(j−k)[t]; ,

{k, 1,Length[c]}]]

This different choice follows from our experimental experience with Mathematica.
We have noticed that, when all the variables are real constants, the use of formula (15)
gives us bigger numerical errors than the direct resolution of (16) – (18), but (15) is
more adequate if some real parameter is involved in the equations.

The coefficients of the system (20) are given by the boundary conditions Ui evaluated
at yk. To solve it, we use the Mathematica command Solve, and the unknowns variables
are saved on the vector d.

Solve

Table
0 ==

Length[c]−1∑
j=0

beta[i, j] ∗ r
(j)

[extb − s] +

Length[c]∑
j=1

dj [s]Ui[y[j]][exta, extb], {i, 1, Length[c]}

 , Table
[
di[s], {i, 1, Length[c]}

]

We notice that the variables used to solve this system must to be local ones. This is
due to the fact that any overlap in the value of the vector d implies that if the dimension
of the equation is changed then the system is incorrectly solved.

Finally, by means of the performed calculations, the Green’s function is defined as
in expression (19). To make it, we need to extract the coefficients of the solution of the
system (20) returned by Mathematica, which is given in a list form. In the following
lines of code we present the extraction of such coefficients and the definition of the
function h that corresponds to the summation part on both sides of the expression
(19).

coef:=Sort[Extract[ecuacion, {1}]];

Do
[
e[i][s ]:=di[s]/.Extract[coef, {i}]; , {i, 1, n}

]
;

h[t , s ]:=

Length[c]∑
i=1

Simplify
[
e[i][s]

]
y[i][t];

The so called function h(t, s) is the most complicated part of the expression of the
Green’s function and the simplification becomes harder to do.
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We recall that this Module has two parts, the first one is the generic algorithm,
described above, and the second part consists on a specific algorithm to solve equations
with periodic boundary conditions. The option Periodicity makes the program to run
in one way or in another.

In the specific algorithm for periodic boundary conditions it is only needed to solve
a boundary value problem and to define the Green’s function as in equation (25).

5.2 An environment based on Manipulate

Once the program has been implemented, the next step is to make a simple environment
for the input of the data. To this end, we have programed a Manipulate package, which
is an interactive environment where users must enter the data through boxes or menus.

When running the program it will appear an environment as in Figure 2.
In this environment the user must enter the order of the equation, n, that should be

a natural number. Then it must be introduced the vector of coefficients, which must
be written in Mathematica format, i.e., between keys and separated by commas. The
vector {c1, . . . , cn} must have length n and it contains the coefficients accompanying
un−1), . . . , u.

The coefficients could be real numbers as well as parameters. These parameters
can be any lowercase letter that has not been previously used in the calculations (for
instance: j,k,l,m,...). Notice that the parameter is not consider as a variable by the
Green’s function, so the Graph option does not run in this case.

In the next two boxes the user must insert the endpoints of the interval I. The
second one must be strictly bigger than the first one. It is allowed to insert at the
endpoints the values a and/or b in a generic way, but in this case the option Graph
does not run again, because they are considered as parameters and not as variables.

In the last box are introduced the boundary conditions. They must be inserted as
a n – dimensional vector, and must take its values at the previously given endpoints a
and b. If we choose the option Periodicity the considered boundary conditions are the
periodic ones and the program calculate them with the alternative algorithm explained
at the beginning of this section. Of course, the periodic boundary conditions can also
be introduced in the corresponding box and the program will made the calculations in
the generic way.

The Enter button controls the execution of the Manipulate, while the program is
making calculations it appears pressed.

5.3 Final remarks

Because of some of the calculations can exceed the maximum execution time of the
machine outputs, we can have an unsatisfactory output that does not return Manipulate
to the initial situation. In such a case it will be necessary to abort the execution and
relaunch the program evaluating again the code.

By making suitable simplifications the output given by the program can be substan-
tially improved. For instance, some commands as ComplexExpand, ExpToTrig or
Simplify, may help to get the expression of the Green’s function without complex
numbers. We remark that G[t, s], where the Green’s function is saved, is a global vari-
able, so once the execution is completed the user can simplify it outside the Module by
applying the commands that are more suitable in each case.

The complete code of the program is included at the end of the paper as an Ap-
pendix. Alternatively it can be downloaded from the web page

http://webspersoais.usc.es/persoais/alberto.cabada/index.html

Notice that Mathematica 8.0.1.0 is recommended in order to run the program.
Some troubles could arise if the program is executed in other versions of Mathematica.
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Program to compute the Green´s function of the equation: un+c1 un-1 + c2 un-2+ ... +cn u= sHtL, t Œ @a,bD

with the two-point boundary conditions: Ui@uD:=⁄j=0
n-1ai

juIjMHaL+bi
juIjMHbL=0, 1£ i £n

Order 2

Coefficients 80, 81<

a 0

b 1

Periodicity

Boundary conditions 8u@0D, u@1D<

ENTER

PROBLEM:

u££HtL+81 uHtL ã s@tD, t œ @0,1D

with boundary conditions

8u@0D ã 0, u@1D ã 0<

The Green´s function is giving by:

G@t,sD=
-
1
9
cscH9L sinH9 sL sinH9-9 tL 0 § s § t § 1

-
1
9
cscH9L sinH9-9 sL sinH9 tL 0 < t < s § 1

Graphic of the Green´s function

Figure 2: Environment for the calculation of the Green’s function

We have also posted a demonstration at the Wolfram site, see [10], where a restricted
version of the program can be used without Mathematica. In particular, the expression
of the Green’s function of the following problems can be obtained by downloading the
source code of the demonstration:

• u′(t)±mu(t) = σ(t), t ∈ [a, b]; u(a) = 0;
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• u′(t)±mu(t) = σ(t), t ∈ [a, b]; u(b) = 0;

• u′(t)±mu(t) = σ(t), t ∈ [a, b]; u(a) = u(b);

• u′′(t)±m2 u(t) = σ(t), t ∈ [a, b]; u(a) = u(b) = 0;

• u′′(t)±m2 u(t) = σ(t), t ∈ [a, b]; u′(a) = u′(b) = 0;

• u′′(t)±m2 u(t) = σ(t), t ∈ [a, b]; u(i)(a) = u(i)(b); i = 0, 1;

• u′′′(t)±m3 u(t) = σ(t), t ∈ [a, b]; u(i)(a) = u(i)(b); i = 0, 1, 2;

• u(4)(t)±m4 u(t) = σ(t), t ∈ [a, b]; u(a) = u(b) = 0; u′(a) = u′(b) = 0;

• u(4)(t)±m4 u(t) = σ(t), t ∈ [a, b]; u(a) = u(b) = 0; u′′(a) = u′′(b) = 0;

• u(4)(t)±m4 u(t) = σ(t), t ∈ [a, b]; u(i)(a) = u(i)(b); i = 0, 1, 2, 3.

Moreover the graph of the corresponding Green’s function is plotted for a = 0, b = 1
and m ∈ [0.1, 10].
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6 Appendix: Mathematica code

The complete code of the program can be downloaded from the site http://webspersoais.
usc.es/persoais/alberto.cabada/index.html. Recall that Mathematica is required
on your computer to run the program (we haved used version 8.0.1.0). Alternatively,
you can see [10] for a restricted version of the program which works without Mathe-
matica.

Clear@"Global`*"D;

ManipulateB
ModuleB8d, e, coef, aux, i, j, k, alfa, beta, U, yk, ecrnt, cadenatexto,

cadenatexto2, rango, condcont2, ecinicial, determinante, soluci<, Off@D;

If@Hc Î Reals ì extb Î Reals ì exta Î RealsL === True,

Graphic = True, Graphic = FalseD;

IfBHn Î Integers && n > 0L === True,

IfBPeriodicity � False,

IfBHextb Î Reals ì exta Î Reals ì exta r extb L === True,

MessageDialog@"a must be less than b"D; ecu = 0; l = 0,

IfBn � Length@cD && n � Length@ccD,

l = 0; aux@u_D@exta_, extb_D := cc;

condcont = Table@aux@uD@exta, extbD@@iDD � 0, 8i, 1, Length@cD<D;

DoAalfa@i, jD = CoefficientAaux@uD@exta, extbD@@iDD, uHjL@extaDE,

8j, 0, Length@cD - 1<, 8i, 1, Length@cD<E;

DoAbeta@i, jD = CoefficientAaux@uD@exta, extbD@@iDD, uHjL@extbDE,

8j, 0, Length@cD - 1<, 8i, 1, Length@cD<E;

rango = MatrixRank@Join@Table@alfa@i, jD, 8i, 1, n<, 8j, 0, n - 1<D,

Table@beta@i, jD, 8i, 1, n<, 8j, 0, n - 1<D, 2DD;

DoBUi@u_D@exta_, extb_D = â
j=0

Length@cD-1

Ialfa@i, jD * uHjL@extaD +

beta@i, jD * uHjL@extbDM, 8i, 1, Length@cD<F;

condcont2 = Table@Ui@uD@exta, extbD � 0, 8i, 1, Length@cD<D; contador = 0;

IfBcondcont === condcont2, Label@volverD; contador = contador + 1;

ecinicial = DSolveBJoinB:yHLength@cDL@tD + â
i=1

Length@cD
c@@iDD yHLength@cD-iL@tD � 0>,

TableAyHiL@0D � 0, 8i, 0, Length@cD - 2<E, 9yHLength@cD-1L@0D � 1=F,

y, tF; cadenatexto = ToString@ecinicialD;

IfBStringMatchQ@cadenatexto, "*Root*"D � False,

StyleBColumnB:RowB:PanelB
ColumnB:Style@" ", BoldD, Style@"PROBLEM: ", BoldD, Style@" ", BoldD,

RowB:problema@t_D = TraditionalFormBuHLength@cDL@tD +

â
i=1

Length@cD
c@@iDD uHLength@cD-iL@tDF; problema@tD � Σ@tD,

", t Î @", exta, ",", extb, "D">F, Style@" ", BoldD,

Style@"with boundary conditions", BoldD, Style@" ", BoldD,

condcont2, r@t_D = ComplexExpand@Re@y@tD �. ecinicial@@1DDDD;,

Style@" ", BoldD, Style@"The Green´s function is given by: ",

BoldD,

IfBHc Î Reals ì extb Î Reals ì exta Î RealsL === True,

DoBsoluci@kD =

DSolveBJoinB:yHLength@cDL@tD + â
i=1

Length@cD
c@@iDD yHLength@cD-iL@tD � 0>,

TableAyHiL@0D � 0, 8i, 0, k - 2<E, 9yHk-1L@0D � 1=,

F, y, tF;
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TableAyHiL@0D � 0, 8i, 0, k - 2<E, 9yHk-1L@0D � 1=,

TableAyHiL@0D � 0, 8i, k, Length@cD - 1<EF, y, tF;

yk@kD@t_D = FullSimplify@ComplexExpand@y@tD �.

Extract@soluci@kD, 81, 1<DDD;, 8k, 1, Length@cD<F,

DoByk@kD@t_D = rHLength@cD-kL@tD + â
j=k

Length@cD-1

c@@Length@cD - jDD rHj-kL@tD;,

8k, 1, Length@cD<FF; determinante = Chop@
1. Det@Table@Ui@yk@jDD@exta, extbD, 8i, 1, n<, 8j, 1, n<DDD;

IfBrango � n,

IfBHdeterminante � 0 &&

Hc Î Reals ì extb Î Reals ì exta Î RealsLL === True,

MessageDialog@"There is not Green's function"D; Graphic =

False; l = 0; G@t_, s_D = "There is not unique solution"; ecu = 0;

aa = exta; bb = extb;, ecuacion := SolveBTableB0 � â
j=0

Length@cD-1

beta@

i, jD * rHjL@extb - sD + â
j=1

Length@cD
dj@sD Ui@yk@jDD@exta, extbD ,

8i, 1, Length@cD<F, Table@di@sD, 8i, 1, Length@cD<DF;

IfBecuacion � 8<,

MessageDialog@"There is not Green's function"D; Graphic = False;

l = 0; G@t_, s_D = "There is not unique solution";

ecu = 0; aa = exta; bb = extb;,

ecu = 1; coef := Sort@Extract@ecuacion, 81<DD;

Do@e@iD@s_D := di@sD �. Extract@coef, 8i<D, 8i, 1, n<D ;

h@t_, s_D := â
i=1

Length@cD
Simplify@e@iD@sDD yk@iD@tD;

G1@t_, s_D = Simplify@Chop@r@t - sD + h@t, sDDD;

G2@t_, s_D = Simplify@Chop@h@t, sDDD;

G@t_, s_D = ¶ G1@t, sD exta £ s £ t £ extb

G2@t, sD exta < t < s £ extb
;

aa = exta; bb = extb; FF,

MessageDialog@"The boundary condicions are linearly dependent"D;

Graphic = False; l = 0; G@t_, s_D = "There is not unique solution";

ecu = 0; aa = exta; bb = extb;F
, Row@8Style@"G@t,sD= ", BoldD, TraditionalForm@G@t, sDD<D,

Style@" ", BoldD, Style@" ", BoldD, Style@" ", BoldD>, CenterFF,

Style@" ", BoldD, If@Graphic � False, , Manipulate@If@ecu � 1, Plot3D@
G@t, sD, 8s, aa, bb<, 8t, aa, bb<D, "Cannot show the graphic"D,

FrameLabel ® "Graphic of the Green´s function"DD>F>FF,

c = N@cD; If@contador == 2, MessageDialog@
"The program cannot calculate the Green´s function"D;

l = 0; ecu = 0; aa = exta; bb = extb; , Goto@volverDDF,

MessageDialog@"The boundary conditions are not valid"D;

l = 0; ecu = 0; aa = exta; bb = extb; F,

MessageDialog@"Vector of coefficients or Boundary conditions:

LENGTH INCORRECT"D; ; ; ; ; FF,

2   Untitled-1
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LENGTH INCORRECT"D; l = 0; ecu = 0; aa = exta; bb = extb; FF,

IfBHextb Î Reals ì exta Î Reals ì exta r extb L === True,

MessageDialog@"a must be less than b"D; ecu = 0; l = 0,

contador2 = 0;

IfBn � Length@cD,

Off@DSolve::bvnulD; l = 0; Label@volver2D;

ecrnt = DSolveBJoinB:yHLength@cDL@tD + â
i=1

Length@cD
c@@iDD yHLength@cD-iL@tD � 0>,

TableAyHiL@extaD - yHiL@extbD � 0, 8i, 0, Length@cD - 2<E,

9yHLength@cD-1L@extaD - yHLength@cD-1L@extbD � 1=F, y, tF;

cadenatexto2 = ToString@ecrntD; contador2 = contador2 + 1;

IfBStringMatchQ@cadenatexto2, "*Root*"D � False,

StyleBColumnB:RowB:PanelBColumnB:Style@" ", BoldD, Style@"PROBLEM: ",

BoldD, Style@" ", BoldD, RowB:problema@t_D = TraditionalFormB

uHLength@cDL@tD + â
i=1

Length@cD
c@@iDD uHLength@cD-iL@tDF; problema@tD � Σ@tD,

", t Î @", exta, ",", extb, "D">F, Style@" ", BoldD,

Style@"with boundary conditions", BoldD, Style@" ", BoldD,

condcont = TableAuHiL@extaD - uHiL@extbD � 0, 8i, 0, Length@cD - 1<E;

condcont, Style@" ", BoldD, Style@
"The Green´s function is given by: ", BoldD,

IfBecrnt � 8<,

MessageDialog@"There is not Green's function"D;

Graphic = False; G@t_, s_D = "There is not unique solution";

ecu = 0; aa = exta; bb = extb;,

ecu = 1; r@t_D = ComplexExpand@Re@y@tD �. ecrnt@@1DDDD;

ecu = 1; G1@t_, s_D = Simplify@Chop@r@exta + t - sDDD;

G2@t_, s_D = Simplify@Chop@r@extb + t - sDDD;

G@t_, s_D = ¶ G1@t, sD exta £ s £ t £ extb

G2@t, sD exta < t < s £ extb
; aa = exta; bb = extb;F;

, Row@8Style@"G@t,sD= ", BoldD, TraditionalForm@G@t, sDD<D,

Style@" ", BoldD, Style@" ", BoldD, Style@
" ", BoldD>, CenterFF, Style@" ", BoldD,

If@Graphic � False, , Manipulate@If@ecu � 1, Plot3D@G@t, sD,

8s, aa, bb<, 8t, aa, bb<D, "Cannot show the graphic"D, FrameLabel ®

"Graphic of the Green´s function"DD>F>FF, c = N@cD; If@contador2 == 2,

MessageDialog@"The program cannot calculate the Green´s function"D;

l = 0; ecu = 0; aa = exta; bb = extb; , Goto@volver2DDF,

MessageDialog@"Length of coefficients´ vector or boundary condictions

INCORRECT"D; l = 0; ecu = 0; aa = exta; bb = extb; FFF,

MessageDialog@"Order must be a positive integer"D; l = 0; ecu = 0;

aa = exta; bb = extb;FF,

StyleA"Program to compute the Green´s function of the equation:

un
+c1 un-1

+ c2 un-2
+ ... +cn u= ΣHtL, t Î @a,bD", BoldE,

Style@Column@8" "<, CenterD, BoldD,

StyleB" with the two-point boundary

conditions: Ui@uD:=âΑi
ju HaL+Βi

ju HbL=0, 1£ i £n", BoldF,

Untitled-1   3
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StyleB" with the two-point boundary

conditions: Ui@uD:=â
j=0

n-1

Αi
juHjLHaL+Βi

juHjLHbL=0, 1£ i £n", BoldF,

Style@" ", BoldD,

88n, 2, " Order"<<,

88c, 80, 0<, "Coefficients"<<,

88exta, 0, "a"<<, 88extb, 1, "b"<<,

88Periodicity, False, "Periodic conditions"<, 8False, True<, ControlType ® Checkbox<,

88cc , If@Periodicity � True, , 8u@extaD, u@extbD<D, "Boundary conditions"<,

FieldHint ® "Periodic", Enabled ® Not@Periodicity � TrueD<,

Delimiter, 88l, , " " <, 8ENTER<, ControlType ® Setter<,

ControlPlacement ® Top, TrackedSymbols -> 8l<, Alignment ® CenterF
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