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Abstract. We prove the solvability of the following boundary value problem

on the real line {
Φ(u′(t))′ = f(t, u(t), u′(t)) on R,
u(−∞) = −1, u(+∞) = 1,

with a singular Φ-Laplacian operator.
We assume f to be a continuous function that satisfies suitable symmetry

conditions. Moreover some growth conditions in a neighborhood of zero are

imposed.

1. Introduction. The study of the existence of travelling wave solutions for reaction-
diffusion equations has motivated in the recent years many papers concerning the
existence of heteroclinic solutions for second order equations (see for instance [1,
10, 11, 13]).

In the recent paper [4] Bianconi and Papalini study the non-autonomous problem{
Φ(u′(t))′ = f(t, u(t), u′(t)), a.e. on R,
u(−∞) = 0, u(+∞) = 1,

where the usual linear second order operator u′′ is replaced by the nonlinear one
Φ(u′(t))′. Here Φ : R → R is an increasing homeomorphism with Φ(0) = 0. The
paradigm for this operator is the classical one-dimensional p-Laplacian

Φp(s) = |s|p−2s, p > 1.

The p-Laplacian operator arises in non-Newtonian fluid theory (as well as in the
diffusion of flows in porus media or in nonlinear elasticity) and has became a very
popular subject in the last decades (see [8, 12, 15, 14] and references therein). Some
existence results for the p-Laplacian in the presence of lower and upper solutions
were extended for arbitrary increasing homeomorphisms Φ with different kinds of
boundary conditions in [5, 6].
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Recently some papers have appeared where the authors consider Φ-Laplacian
type equations with homeomorphisms Φ : (−a, a) → (−b, b) for 0 < a, b ≤ +∞ (see
[2, 3, 7, 9]). When b < +∞ the Φ-Laplacian is said to be bounded or non-surjective
and the classical model is the mean curvature operator Φ(s) = s√

1+s2 for s ∈ R.
On the other hand if a < +∞ then the Φ-Laplacian is said to be singular, in the
terminology of Bereanu and Mawhin [3], and in this case the model is the relativistic
operator Φ(s) = s√

1−s2 for s ∈ (−1, 1).
In this paper we contribute to the literature studying the following boundary

value problem on the real line{
Φ(u′(t))′ = f(t, u(t), u′(t)), on R,
u(−∞) = −1, u(+∞) = 1,

where Φ is singular.
In [3] Bereanu and Mawhin have proven the striking result that for a singular

Φ-Laplacian the Dirichlet problem{
Φ(u′(t))′ = f(t, u(t), u′(t)), for all t ∈ [0, T ],
u(0) = 0 = u(T ),

is always solvable for every continuous function f and every T > 0 without addi-
tional assumptions (see also [7]). This “universal” solvability is related with the
fact that all solutions of this problem have their derivatives a priori bounded. In
this paper we exploit this fact in order to perform an approximation procedure to
deal with our infinite interval problem.

2. Preliminaries. We shall deal with the problem

Φ(u′(t))′ = f(t, u(t), u′(t)) on R, (1)
u(−∞) = −1, u(+∞) = 1, (2)

under the following assumptions:
(h0) Φ : (−a, a) → R is an increasing homeomorphism, with Φ(0) = 0 and 0 < a <

+∞ (i.e., Φ is singular).
(f0) f : R3 → R is continuous and satisfies the symmetry condition

f(t, x, y) = −f(−t,−x, y) for all (t, x, y) ∈ R3.

(f1) f(t, 1, y) = 0 = f(t,−1, y) for all t, y ∈ R.
(f2) f(t, x, y) < 0 for all t > 0, −1 < x < 1 and y ∈ R. Moreover for every com-

pact set of the form K = [−r, r] × [−ε, ε], where 0 < r < 1 and 0 < ε < 1,
there exist tK ≥ 0 and a continuous function hK : [tK ,∞) → R such that

f(t, x, y) ≤ hK(t) for all t ≥ tK and (x, y) ∈ K,

and ∫ +∞

tK

hk(s)ds = −∞.

A solution of (1)-(2) is a function u ∈ C1(R) such that u′ ∈ (−a, a), φ◦u′ ∈ C1(R)
and u satisfies the differential equation (1) and the boundary conditions (2).

We shall approximate problem (1)-(2) by problems defined on compact intervals.
The following result shall be very useful for us.
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Theorem 2.1. [3, Corollary 1] Suppose that Φ : (−a, a) → R is an increasing
homeomorphism with 0 < a < +∞ and f : [0, T ]×R2 → R is continuous. Then the
Dirichlet problem

Φ(u′(t))′ = f(t, u(t), u′(t)), u(0) = 0 = u(T ),

has at least one solution. (Notice that in particular ‖u′‖∞ < a).

3. Main results. Next we prove the solvability of our problem.

Theorem 3.1. If conditions (h0), (f0), (f1) and (f2) hold then problem (1)-(2) has
an odd increasing solution u : R → R.

Proof. By the symmetry condition of (f0) it suffices to prove the existence of a
solution u : [0,+∞) → R of (1) satisfying u(0) = 0 and lim

t→+∞
u(t) = 1, since its

odd extension solves (1)-(2).
Claim 1.- For each n ∈ N the Dirichlet boundary value problem

Φ(u′(t))′ = f(t, u, u′), u(0) = 0, u(n) = 0, (3)

has a solution un : [0, n] → R satisfying 0 ≤ un(t) ≤ 1 and ‖u′n‖∞ < a.
Consider the continuous function

f̃(t, x, y) =
{

f(t, x, y), if −1 ≤ x ≤ 1
0, in other case.

For each n ∈ N the modified problem

Φ(u′(t))′ = f̃(t, u(t), u′(t)), u(0) = 0 = u(n),

has by Theorem 2.1 a solution un : [0, n] → R with ‖u′n‖∞ < a. Moreover it is easy
to show that −1 ≤ un(t) ≤ 1 and therefore un is also a solution of (3). On the
other hand (f2) implies that un is concave and then 0 ≤ un(t) ≤ 1.

Claim 2.- There exists a bounded nondecreasing solution u : [0,+∞) → R of (1)
such that u(0) = 0 and 0 ≤ u(t) ≤ 1.

Since un and u′n are uniformly bounded then it is easy to prove that a subsequence
of un converges uniformly on compact sets to a solution u : [0,+∞) → R of (1).
Clearly u(0) = 0 and 0 ≤ u(t) ≤ 1.

On the other hand, from the uniform continuity of function Φ−1 on compact sets
it follows that the sequence {u′n} is an equicontinuous family, and as consequence
it is verified that Φ(u′(t))′ = f(t, u(t), u′(t)) ≤ 0. So we deduce that u′ is nonin-
creasing. If u′(t0) < 0 at some point t0 ≥ 0 then u′(t) ≤ u′(t0) < 0 for all t ≥ t0
and consequently lim

t→+∞
u(t) = −∞, a contradiction. Thus u′(t) ≥ 0 for all t ≥ 0

and then u is nondecreasing.

Claim 3.- lim
t→+∞

u′(t) = 0.

Since u′ is decreasing there exists lim
t→+∞

u′(t) ∈ R ∪ {−∞}. But as u is bounded

we deduce that lim
t→+∞

u′(t) = 0.
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Claim 4.- lim
t→+∞

u(t) = 1.

Since u is concave and bounded there exists lim
t→+∞

u(t) = l ∈ (0, 1]. Suppose

that l < 1. From (f2) and the facts that 0 ≤ u(t) ≤ l < 1 and lim
t→+∞

u′(t) = 0 it

follows that there exist a suitable compact set K ⊂ (−1, 1) × R, tK > 0 for which
0 < u′(tK) < 1 and a continuous function hK such that

Φ(u′(t))′ = f(t, u(t), u′(t)) ≤ hK(t) for all t ≥ tK ,

and
∫∞

tK
hK(t) = −∞. But in this case Φ(u′(t)) → −∞ and then u′(t) → −a < 0,

which is a contradiction. Thus l = 1 and the proof is over.

Remark 1. With some technical minor modifications the result of Theorem (3.1)
also holds for L1-Carathéodory nonlinearities instead of continuous ones.

Example 1. Let n ∈ N be given. Consider the problem
(

u′(t)√
1−u′(t)2

)′
= t3(u(t)2 − 1)(u′(t)2 n + 1), on R,

u(−∞) = −1, u(+∞) = 1,

where Φ(s) = s√
1−s2 for all s ∈ (−1, 1) models mechanical oscillations subject to

relativistic effects and f(t, x, y) = t3(x2−1)(y2 n+1). Clearly conditions of Theorem
3.1 are fulfilled and so its solvability is guaranteed.
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